Update README.md
Browse files
README.md
CHANGED
@@ -6,15 +6,14 @@ base_model:
|
|
6 |
---
|
7 |
# Libra: Large Chinese-based Safeguard for AI Content
|
8 |
|
9 |
-
**Libra
|
10 |
|
11 |
-
***Libra
|
12 |
|
13 |
同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen-14B-Chat的仓库。
|
14 |
|
15 |
*Meanwhile, we have developed the Libra-Guard series of models in different parameter scales based on multiple open-source models. This repository is dedicated to Libra-Guard-Qwen-14B-Chat.*
|
16 |
|
17 |
-
Paper: [Libra: Large Chinese-based Safeguard for AI Content](https://arxiv.org/abs/####).
|
18 |
|
19 |
Code: [caskcsg/Libra](https://github.com/caskcsg/Libra)
|
20 |
|
@@ -41,9 +40,9 @@ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_s
|
|
41 |
```
|
42 |
|
43 |
## 实验结果(Experiment Results)
|
44 |
-
在 Libra
|
45 |
|
46 |
-
*In the multi-scenario evaluation on Libra
|
47 |
|
48 |
| 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
|
49 |
|------------------------------------|-----------|--------|----------|----------|
|
@@ -129,14 +128,15 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
129 |
*If you use this project in academic or research scenarios, please cite the following references:*
|
130 |
|
131 |
```bibtex
|
132 |
-
@misc{
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
|
|
137 |
}
|
138 |
```
|
139 |
|
140 |
-
感谢对 Libra
|
141 |
|
142 |
-
*Thank you for your interest in Libra
|
|
|
6 |
---
|
7 |
# Libra: Large Chinese-based Safeguard for AI Content
|
8 |
|
9 |
+
**Libra-Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra-Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra-Guard 在 Libra-Test 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。
|
10 |
|
11 |
+
***Libra-Guard** is a safeguard model for Chinese large language models (LLMs). Libra-Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra-Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra-Test and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
|
12 |
|
13 |
同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen-14B-Chat的仓库。
|
14 |
|
15 |
*Meanwhile, we have developed the Libra-Guard series of models in different parameter scales based on multiple open-source models. This repository is dedicated to Libra-Guard-Qwen-14B-Chat.*
|
16 |
|
|
|
17 |
|
18 |
Code: [caskcsg/Libra](https://github.com/caskcsg/Libra)
|
19 |
|
|
|
40 |
```
|
41 |
|
42 |
## 实验结果(Experiment Results)
|
43 |
+
在 Libra-Test 的多场景评测中,Libra-Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen-14B-Chat 在部分核心指标上的对比:
|
44 |
|
45 |
+
*In the multi-scenario evaluation on Libra-Test, the Libra-Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen-14B-Chat on some key metrics:*
|
46 |
|
47 |
| 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
|
48 |
|------------------------------------|-----------|--------|----------|----------|
|
|
|
128 |
*If you use this project in academic or research scenarios, please cite the following references:*
|
129 |
|
130 |
```bibtex
|
131 |
+
@misc{libra,
|
132 |
+
title = {Libra: Large Chinese-based Safeguard for AI Content},
|
133 |
+
url = {https://github.com/caskcsg/Libra/},
|
134 |
+
author= {Li, Ziyang and Yu, Huimu and Wu, Xing and Lin, Yuxuan and Liu, Dingqin and Hu, Songlin},
|
135 |
+
month = {January},
|
136 |
+
year = {2025}
|
137 |
}
|
138 |
```
|
139 |
|
140 |
+
感谢对 Libra-Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
|
141 |
|
142 |
+
*Thank you for your interest in Libra-Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*
|