famor6644 commited on
Commit
e5c229b
·
verified ·
1 Parent(s): 61c6a0e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -6,15 +6,14 @@ base_model:
6
  ---
7
  # Libra: Large Chinese-based Safeguard for AI Content
8
 
9
- **Libra Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra Guard 在 Libra Bench 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。
10
 
11
- ***Libra Guard** is a safeguard model for Chinese large language models (LLMs). Libra Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra Bench and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
12
 
13
  同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen-14B-Chat的仓库。
14
 
15
  *Meanwhile, we have developed the Libra-Guard series of models in different parameter scales based on multiple open-source models. This repository is dedicated to Libra-Guard-Qwen-14B-Chat.*
16
 
17
- Paper: [Libra: Large Chinese-based Safeguard for AI Content](https://arxiv.org/abs/####).
18
 
19
  Code: [caskcsg/Libra](https://github.com/caskcsg/Libra)
20
 
@@ -41,9 +40,9 @@ pip install transformers==4.32.0 accelerate tiktoken einops scipy transformers_s
41
  ```
42
 
43
  ## 实验结果(Experiment Results)
44
- 在 Libra Bench 的多场景评测中,Libra Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen-14B-Chat 在部分核心指标上的对比:
45
 
46
- *In the multi-scenario evaluation on Libra Bench, the Libra Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen-14B-Chat on some key metrics:*
47
 
48
  | 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
49
  |------------------------------------|-----------|--------|----------|----------|
@@ -129,14 +128,15 @@ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
129
  *If you use this project in academic or research scenarios, please cite the following references:*
130
 
131
  ```bibtex
132
- @misc{libra_guard_qwen_14b_chat_2025,
133
- title = {Libra Guard Qwen-14B-Chat: A Safeguard Model for Chinese LLMs},
134
- author = {X, ... and Y, ...},
135
- year = {2025},
136
- url = {https://github.com/.../Libra-Guard-Qwen-14B-Chat}
 
137
  }
138
  ```
139
 
140
- 感谢对 Libra Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
141
 
142
- *Thank you for your interest in Libra Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*
 
6
  ---
7
  # Libra: Large Chinese-based Safeguard for AI Content
8
 
9
+ **Libra-Guard** 是一款面向中文大型语言模型(LLM)的安全护栏模型。Libra-Guard 采用两阶段渐进式训练流程,先利用可扩展的合成样本预训练,再使用高质量真实数据进行微调,最大化利用数据并降低对人工标注的依赖。实验表明,Libra-Guard 在 Libra-Test 上的表现显著优于同类开源模型(如 ShieldLM等),在多个任务上可与先进商用模型(如 GPT-4o)接近,为中文 LLM 的安全治理提供了更强的支持与评测工具。
10
 
11
+ ***Libra-Guard** is a safeguard model for Chinese large language models (LLMs). Libra-Guard adopts a two-stage progressive training process: first, it uses scalable synthetic samples for pretraining, then employs high-quality real-world data for fine-tuning, thus maximizing data utilization while reducing reliance on manual annotation. Experiments show that Libra-Guard significantly outperforms similar open-source models (such as ShieldLM) on Libra-Test and is close to advanced commercial models (such as GPT-4o) in multiple tasks, providing stronger support and evaluation tools for Chinese LLM safety governance.*
12
 
13
  同时,我们基于多种开源模型构建了不同参数规模的 Libra-Guard 系列模型。本仓库为Libra-Guard-Qwen-14B-Chat的仓库。
14
 
15
  *Meanwhile, we have developed the Libra-Guard series of models in different parameter scales based on multiple open-source models. This repository is dedicated to Libra-Guard-Qwen-14B-Chat.*
16
 
 
17
 
18
  Code: [caskcsg/Libra](https://github.com/caskcsg/Libra)
19
 
 
40
  ```
41
 
42
  ## 实验结果(Experiment Results)
43
+ 在 Libra-Test 的多场景评测中,Libra-Guard 系列模型相较于同类开源模型(如 ShieldLM)表现更佳,并在多个任务上与先进商用模型(如 GPT-4o)相当。下表给出了 Libra-Guard-Qwen-14B-Chat 在部分核心指标上的对比:
44
 
45
+ *In the multi-scenario evaluation on Libra-Test, the Libra-Guard series outperforms similar open-source models such as ShieldLM, and is on par with advanced commercial models like GPT-4o in multiple tasks. The table below shows a comparison of Libra-Guard-Qwen-14B-Chat on some key metrics:*
46
 
47
  | 模型 | Average | Synthesis | Safety-Prompts | BeaverTails\_30k |
48
  |------------------------------------|-----------|--------|----------|----------|
 
128
  *If you use this project in academic or research scenarios, please cite the following references:*
129
 
130
  ```bibtex
131
+ @misc{libra,
132
+ title = {Libra: Large Chinese-based Safeguard for AI Content},
133
+ url = {https://github.com/caskcsg/Libra/},
134
+ author= {Li, Ziyang and Yu, Huimu and Wu, Xing and Lin, Yuxuan and Liu, Dingqin and Hu, Songlin},
135
+ month = {January},
136
+ year = {2025}
137
  }
138
  ```
139
 
140
+ 感谢对 Libra-Guard 的关注与使用,如有任何问题或建议,欢迎提交 Issue 或 Pull Request!
141
 
142
+ *Thank you for your interest in Libra-Guard. If you have any questions or suggestions, feel free to submit an Issue or Pull Request!*