{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "28e561c1-96da-4fc9-9261-16c4562b057b", "metadata": {}, "outputs": [], "source": [ "import gradio as gr\n", "import numpy as np\n", "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import torch\n", "from torch.utils.data import Dataset, DataLoader\n", "from transformers import AutoModel, AutoTokenizer" ] }, { "cell_type": "code", "execution_count": null, "id": "10ff0dd7-7cd1-4eb8-824e-56b3d640b271", "metadata": {}, "outputs": [], "source": [ "from transformers import BlipForConditionalGeneration, AutoProcessor\n", "\n", "model = BlipForConditionalGeneration.from_pretrained(\"cassmussard/BLIP_airbnb\")\n", "processor = AutoProcessor.from_pretrained(\"Salesforce/blip-image-captioning-base\")" ] }, { "cell_type": "code", "execution_count": null, "id": "fd119e29-aaf4-4aec-af80-77b8e11fb82f", "metadata": {}, "outputs": [], "source": [ "model.eval()\n", "def predict(image):\n", " inputs = processor(images=image, return_tensors=\"pt\")\n", " pixel_values = inputs[\"pixel_values\"]\n", " generated_ids = model.generate(pixel_values=pixel_values, max_length=50)\n", " generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]\n", " return generated_caption" ] }, { "cell_type": "code", "execution_count": null, "id": "435fdb1e-167f-45dc-bbbb-b8d0e05becbb", "metadata": {}, "outputs": [], "source": [ "iface = gr.Interface(fn=predict, \n", " inputs=\"image\", \n", " outputs='label',\n", " live=True,\n", " description=\"Draw a number on the sketchpad to see the model's prediction.\",\n", " ).launch(debug=True, share=True);\n", "iface.launch(share=True)" ] }, { "cell_type": "code", "execution_count": null, "id": "e4ffb76c-667e-4a4e-8fa5-bc3d12e61e83", "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "venv", "language": "python", "name": "venv" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.12" } }, "nbformat": 4, "nbformat_minor": 5 }