File size: 5,740 Bytes
811482d 7d6bf6f 811482d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
---
datasets:
- facebook/anli
metrics:
- accuracy
base_model:
- meta-llama/Llama-3.1-8B-Instruct
pipeline_tag: sentence-similarity
library_name: peft
tags:
- NLI
---
# Model Card for Model ID
The Meta Llama-3.1-8B-Instruct model fine-tuned on the Adversarial Natural Language Inference (ANLI) Benchmark.
**Evaluation Results**
Accuracy:
| ANLI-R1 | ANLI-R2 | ANLI-R3 | Avg. |
| ------- | ------- |-------|-------|
| 77.2 | 62.8 | 61.2 | 67.1 |
## Usage
NLI use-case:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer
from peft import PeftModel
import torch
base_model_name = 'meta-llama/Llama-3.1-8B-Instruct'
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
model = AutoModelForCausalLM.from_pretrained(base_model_name,
pad_token_id=tokenizer.eos_token_id,
device_map='auto')
lora_model = PeftModel.from_pretrained(model, 'cassuto/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct')
label_str = ['entailment', 'neutral', 'contradiction']
def eval(premise : str, hypothesis : str, device = 'cuda'):
input = ("<|start_header_id|>system<|end_header_id|>\n\nBased on the following premise, determine if the hypothesis is entailment, contradiction, or neutral." +
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
"<Premise>: " + premise + "\n\n<Hypothesis>: " + hypothesis + "\n\n" +
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>")
tk = tokenizer(input)
with torch.no_grad():
input_ids = torch.tensor(tk['input_ids']).unsqueeze(0).to(device)
out = lora_model.generate(input_ids=input_ids,
attention_mask=torch.tensor(tk['attention_mask']).unsqueeze(0).to(device),
max_new_tokens=10
)
print(tokenizer.decode(out[0]))
s = tokenizer.decode(out[0][input_ids.shape[-1]:])
for lbl, l in enumerate(label_str):
if s.find(l) > -1:
return lbl
else:
assert False, 'Invalid model output: ' + s
print(eval("A man is playing a guitar.", "A woman is reading a book."))
```
## Training Details
- **Dataset:** facebook/anli
- **Hardware:** NIVIDA H20 (96GB) card x1.
#### Fine Tuning Hyperparameters
- **Training regime:** fp16 <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
- **LoRA rank:** 64
- **LoRA alpha:** 16
- **LoRA dropout:** 0.1
- **Learning rate:** 0.0001
- **Training Batch Size:** 4
- **Epoch:** 3
- **Context length:** 2048
#### Fine Tuning Code
```python
from datasets import load_dataset
import numpy as np
dataset = load_dataset("anli")
model_name = "meta-llama/Llama-3.1-8B-Instruct"
def out_ckp(r):
return f"/path/to/project/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct/checkpoints-r{r}"
def out_lora_model_fn(r):
return f'/path/to/project/Llama-3.1-ANLI-R1-R2-R3-8B-Instruct/lora-r{r}'
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import AutoTokenizer, GenerationConfig
from peft import LoraConfig, get_peft_model, PeftModel
from trl import SFTConfig, SFTTrainer
import torch
from collections.abc import Mapping
label_str = ['entailment', 'neutral', 'contradiction']
def preprocess_function(examples):
inputs = ["<|start_header_id|>system<|end_header_id|>\n\nBased on the following premise, determine if the hypothesis is entailment, contradiction, or neutral." +
"<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"
"<Premise>: " + p + "\n\n<Hypothesis>: " + h + "\n\n" +
"<|eot_id|><|start_header_id|>assistant<|end_header_id|>" + label_str[lbl] + "<|eot_id|>\n" # FIXME remove \n
for p, h, lbl in zip(examples["premise"], examples["hypothesis"], examples['label'])]
model_inputs = {}
model_inputs['text'] = inputs
return model_inputs
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name,
pad_token_id=tokenizer.eos_token,
device_map='auto')
model.config.use_cache=False
model.config.pretraining_tp=1
tokenizer.padding_side = "right"
tokenizer.pad_token = tokenizer.eos_token
for r in range(1,4):
print('Round ', r)
train_data = dataset[f'train_r{r}']
val_data = dataset[f'dev_r{r}']
train_data = train_data.map(preprocess_function, batched=True,num_proc=8)
val_data = val_data.map(preprocess_function, batched=True,num_proc=8)
training_args = SFTConfig(
fp16=True,
output_dir=out_ckp(r),
learning_rate=1e-4,
per_device_train_batch_size=4,
per_device_eval_batch_size=1,
num_train_epochs=3,
logging_steps=10,
weight_decay=0,
logging_dir=f"./logs-r{r}",
save_strategy="epoch",
save_total_limit=1,
max_seq_length=2048,
packing=False,
dataset_text_field="text"
)
if r==1:
# create LoRA model
peft_config = LoraConfig(
r=64,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type='CAUSAL_LM'
)
lora_model = get_peft_model(model, peft_config)
else:
# load the previous trained LoRA part
lora_model = PeftModel.from_pretrained(model, out_lora_model_fn(r-1),
is_trainable=True)
trainer = SFTTrainer(
model=lora_model,
tokenizer=tokenizer,
args=training_args,
train_dataset=train_data,
)
trainer.train()
print(f'saving to "{out_lora_model_fn(r)}"')
lora_model.save_pretrained(out_lora_model_fn(r))
```
- PEFT 0.13.2 |