jacklin64 commited on
Commit
651951a
·
1 Parent(s): bb9c9a9

initial commit

Browse files
Files changed (4) hide show
  1. README.md +5 -0
  2. config.json +23 -0
  3. pytorch_model.bin +3 -0
  4. vocab.txt +0 -0
README.md ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ This model is to reproduce Contextualized Query Embeddings for Conversational Search described in the following paper:
2
+
3
+ > Sheng-Chieh Lin, Jheng-Hong Yang, and Jimmy Lin. [Contextualized Query Embeddings for Conversational Search.](https://cs.uwaterloo.ca/~jimmylin/publications/Lin_etal_EMNLP2021.pdf) EMNLP, Nov 2021.
4
+
5
+ This model is finetuend only on query ecoder with frezzed passage encoder. The starting point is the [tct_colbert-msmarco](https://huggingface.co/castorini/tct_colbert-msmarco/tree/main). The detailed usage of the model will be out soon on [Chatty Goose](https://github.com/castorini/chatty-goose). You can also check the fine-tuning and inference using tensorflow in our [CQE repo](https://github.com/castorini/CQE)
config.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "gradient_checkpointing": false,
7
+ "hidden_act": "gelu",
8
+ "hidden_dropout_prob": 0.1,
9
+ "hidden_size": 768,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 3072,
12
+ "layer_norm_eps": 1e-12,
13
+ "max_position_embeddings": 512,
14
+ "model_type": "bert",
15
+ "num_attention_heads": 12,
16
+ "num_hidden_layers": 12,
17
+ "pad_token_id": 0,
18
+ "position_embedding_type": "absolute",
19
+ "transformers_version": "4.6.1",
20
+ "type_vocab_size": 2,
21
+ "use_cache": true,
22
+ "vocab_size": 30522
23
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e365243229fe7d6e93c88cd684c20d24e06456858ae49b6e63cce23279ec80
3
+ size 438012727
vocab.txt ADDED
The diff for this file is too large to render. See raw diff