Cat Activation Sound commited on
Commit
e418bb6
·
1 Parent(s): cd3ca49

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +104 -0
README.md ADDED
@@ -0,0 +1,104 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: ntu-spml/distilhubert-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.87
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # ntu-spml/distilhubert-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7428
36
+ - Accuracy: 0.87
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 3.992986714871485e-05
56
+ - train_batch_size: 16
57
+ - eval_batch_size: 64
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9807885777224674,0.996064720140604) and epsilon=1e-08
60
+ - lr_scheduler_type: cosine
61
+ - lr_scheduler_warmup_steps: 509
62
+ - num_epochs: 100
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | No log | 1.0 | 57 | 2.2832 | 0.3 |
69
+ | No log | 2.0 | 114 | 2.2273 | 0.28 |
70
+ | No log | 3.0 | 171 | 2.0861 | 0.46 |
71
+ | No log | 4.0 | 228 | 1.8473 | 0.5 |
72
+ | No log | 5.0 | 285 | 1.5146 | 0.6 |
73
+ | No log | 6.0 | 342 | 1.2140 | 0.69 |
74
+ | No log | 7.0 | 399 | 0.9856 | 0.74 |
75
+ | No log | 8.0 | 456 | 0.8056 | 0.79 |
76
+ | 1.6591 | 9.0 | 513 | 0.7135 | 0.8 |
77
+ | 1.6591 | 10.0 | 570 | 0.7642 | 0.75 |
78
+ | 1.6591 | 11.0 | 627 | 0.6344 | 0.79 |
79
+ | 1.6591 | 12.0 | 684 | 0.5982 | 0.83 |
80
+ | 1.6591 | 13.0 | 741 | 0.5369 | 0.86 |
81
+ | 1.6591 | 14.0 | 798 | 0.7501 | 0.79 |
82
+ | 1.6591 | 15.0 | 855 | 0.7493 | 0.78 |
83
+ | 1.6591 | 16.0 | 912 | 0.6891 | 0.83 |
84
+ | 1.6591 | 17.0 | 969 | 0.7492 | 0.8 |
85
+ | 0.2402 | 18.0 | 1026 | 0.6663 | 0.88 |
86
+ | 0.2402 | 19.0 | 1083 | 0.5750 | 0.89 |
87
+ | 0.2402 | 20.0 | 1140 | 0.8215 | 0.81 |
88
+ | 0.2402 | 21.0 | 1197 | 0.7435 | 0.79 |
89
+ | 0.2402 | 22.0 | 1254 | 0.8305 | 0.86 |
90
+ | 0.2402 | 23.0 | 1311 | 0.7636 | 0.83 |
91
+ | 0.2402 | 24.0 | 1368 | 0.9786 | 0.77 |
92
+ | 0.2402 | 25.0 | 1425 | 0.7082 | 0.88 |
93
+ | 0.2402 | 26.0 | 1482 | 0.7698 | 0.85 |
94
+ | 0.0206 | 27.0 | 1539 | 0.7360 | 0.87 |
95
+ | 0.0206 | 28.0 | 1596 | 0.8575 | 0.84 |
96
+ | 0.0206 | 29.0 | 1653 | 0.7428 | 0.87 |
97
+
98
+
99
+ ### Framework versions
100
+
101
+ - Transformers 4.32.0.dev0
102
+ - Pytorch 2.0.1
103
+ - Datasets 2.13.2.dev1
104
+ - Tokenizers 0.13.3