Cat Activation Sound
commited on
Commit
·
e418bb6
1
Parent(s):
cd3ca49
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model: ntu-spml/distilhubert
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
datasets:
|
7 |
+
- marsyas/gtzan
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: ntu-spml/distilhubert-finetuned-gtzan
|
12 |
+
results:
|
13 |
+
- task:
|
14 |
+
name: Audio Classification
|
15 |
+
type: audio-classification
|
16 |
+
dataset:
|
17 |
+
name: GTZAN
|
18 |
+
type: marsyas/gtzan
|
19 |
+
config: all
|
20 |
+
split: train
|
21 |
+
args: all
|
22 |
+
metrics:
|
23 |
+
- name: Accuracy
|
24 |
+
type: accuracy
|
25 |
+
value: 0.87
|
26 |
+
---
|
27 |
+
|
28 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
29 |
+
should probably proofread and complete it, then remove this comment. -->
|
30 |
+
|
31 |
+
# ntu-spml/distilhubert-finetuned-gtzan
|
32 |
+
|
33 |
+
This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
|
34 |
+
It achieves the following results on the evaluation set:
|
35 |
+
- Loss: 0.7428
|
36 |
+
- Accuracy: 0.87
|
37 |
+
|
38 |
+
## Model description
|
39 |
+
|
40 |
+
More information needed
|
41 |
+
|
42 |
+
## Intended uses & limitations
|
43 |
+
|
44 |
+
More information needed
|
45 |
+
|
46 |
+
## Training and evaluation data
|
47 |
+
|
48 |
+
More information needed
|
49 |
+
|
50 |
+
## Training procedure
|
51 |
+
|
52 |
+
### Training hyperparameters
|
53 |
+
|
54 |
+
The following hyperparameters were used during training:
|
55 |
+
- learning_rate: 3.992986714871485e-05
|
56 |
+
- train_batch_size: 16
|
57 |
+
- eval_batch_size: 64
|
58 |
+
- seed: 42
|
59 |
+
- optimizer: Adam with betas=(0.9807885777224674,0.996064720140604) and epsilon=1e-08
|
60 |
+
- lr_scheduler_type: cosine
|
61 |
+
- lr_scheduler_warmup_steps: 509
|
62 |
+
- num_epochs: 100
|
63 |
+
|
64 |
+
### Training results
|
65 |
+
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
68 |
+
| No log | 1.0 | 57 | 2.2832 | 0.3 |
|
69 |
+
| No log | 2.0 | 114 | 2.2273 | 0.28 |
|
70 |
+
| No log | 3.0 | 171 | 2.0861 | 0.46 |
|
71 |
+
| No log | 4.0 | 228 | 1.8473 | 0.5 |
|
72 |
+
| No log | 5.0 | 285 | 1.5146 | 0.6 |
|
73 |
+
| No log | 6.0 | 342 | 1.2140 | 0.69 |
|
74 |
+
| No log | 7.0 | 399 | 0.9856 | 0.74 |
|
75 |
+
| No log | 8.0 | 456 | 0.8056 | 0.79 |
|
76 |
+
| 1.6591 | 9.0 | 513 | 0.7135 | 0.8 |
|
77 |
+
| 1.6591 | 10.0 | 570 | 0.7642 | 0.75 |
|
78 |
+
| 1.6591 | 11.0 | 627 | 0.6344 | 0.79 |
|
79 |
+
| 1.6591 | 12.0 | 684 | 0.5982 | 0.83 |
|
80 |
+
| 1.6591 | 13.0 | 741 | 0.5369 | 0.86 |
|
81 |
+
| 1.6591 | 14.0 | 798 | 0.7501 | 0.79 |
|
82 |
+
| 1.6591 | 15.0 | 855 | 0.7493 | 0.78 |
|
83 |
+
| 1.6591 | 16.0 | 912 | 0.6891 | 0.83 |
|
84 |
+
| 1.6591 | 17.0 | 969 | 0.7492 | 0.8 |
|
85 |
+
| 0.2402 | 18.0 | 1026 | 0.6663 | 0.88 |
|
86 |
+
| 0.2402 | 19.0 | 1083 | 0.5750 | 0.89 |
|
87 |
+
| 0.2402 | 20.0 | 1140 | 0.8215 | 0.81 |
|
88 |
+
| 0.2402 | 21.0 | 1197 | 0.7435 | 0.79 |
|
89 |
+
| 0.2402 | 22.0 | 1254 | 0.8305 | 0.86 |
|
90 |
+
| 0.2402 | 23.0 | 1311 | 0.7636 | 0.83 |
|
91 |
+
| 0.2402 | 24.0 | 1368 | 0.9786 | 0.77 |
|
92 |
+
| 0.2402 | 25.0 | 1425 | 0.7082 | 0.88 |
|
93 |
+
| 0.2402 | 26.0 | 1482 | 0.7698 | 0.85 |
|
94 |
+
| 0.0206 | 27.0 | 1539 | 0.7360 | 0.87 |
|
95 |
+
| 0.0206 | 28.0 | 1596 | 0.8575 | 0.84 |
|
96 |
+
| 0.0206 | 29.0 | 1653 | 0.7428 | 0.87 |
|
97 |
+
|
98 |
+
|
99 |
+
### Framework versions
|
100 |
+
|
101 |
+
- Transformers 4.32.0.dev0
|
102 |
+
- Pytorch 2.0.1
|
103 |
+
- Datasets 2.13.2.dev1
|
104 |
+
- Tokenizers 0.13.3
|