--- license: llama3 base_model: catallama/CataLlama-v0.1-Instruct-SFT tags: - llama - llama-3 - Catalan model-index: - name: catallama/CataLlama-v0.1-Instruct-DPO results: [] datasets: - catallama/Catalan-DPO language: - ca - en pipeline_tag: text-generation --- # NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead. ![](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-DPO/resolve/main/CataLlama-v0.1.png) # NOTE: [CataLlama-v0.2](https://huggingface.co/catallama/CataLlama-v0.2-Instruct-SFT-DPO-Merged) is out. Please use that one instead. # CataLlama-v0.1-Instruct-DPO **CataLlama-v0.1-Instruct-DPO** is a DPO fine-tune of [catallama/CataLlama-v0.1-Instruct-SFT](https://huggingface.co/catallama/CataLlama-v0.1-Instruct-SFT) on the [catallama/Catalan-DPO](https://huggingface.co/datasets/catallama/Catalan-DPO) dataset. CataLlama was trained on roughly **445 million new tokens** in three separate stages. This is the 3rd and final stage of the training. The model shows improved proficiency with the Catalan language. **This is an instruction fine-tuned model, optimised with DPO, proficient on the following tasks in Catalan** - *Information extraction (suitable for RAG)* - *Named Entity Recognition (NER)* - *Translation from English to Catalan and Catalan to English* - *Summarization - both short form and long form* - *Sentiment analysis* **Model developers** [Laurentiu Petrea](https://www.linkedin.com/in/laurentiupetrea/) based on Llama-3 from Meta. **Model Architecture** CataLlama is an auto-regressive language model that uses an optimized transformer architecture. The tuned versions use supervised fine-tuning (SFT) and direct preference optimisation (DPO) to align with human preferences for helpfulness and safety. **License** The model uses the llama-3 license available at: [https://llama.meta.com/llama3/license](https://llama.meta.com/llama3/license) ## Benchmarks | Benchmark | Value | | ------------------ | ------ | | MMLU 5 shot | 47.34 | | GSM8K cot 8 shot | 43.29 | ### Use with transformers See the snippet below for usage with Transformers: **The model follows the same prompt template as Llama-3 Instruct** ```python import transformers import torch model_id = "catallama/CataLlama-v0.1-Instruct-DPO" pipeline = transformers.pipeline( "text-generation", model=model_id, model_kwargs={"torch_dtype": torch.bfloat16}, device_map="auto", ) messages = [ {"role": "user", "content": "Ei com estàs avui?"}, ] prompt = pipeline.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) outputs = pipeline( prompt, max_new_tokens=1024, do_sample=True, temperature=0.6, top_p=0.9, ) print(outputs[0]["generated_text"][len(prompt):]) ``` **Actual Inference Examples** ``` Prompt: Pot Donald Trump sopar amb Juli Cèsar? Answer: No, Donald Trump no podria sopar amb Juli Cèsar, ja que Juli Cèsar va morir fa més de 2.000 anys i, per tant, no està viu per a poder sopar amb ell. A més, Juli Cèsar va ser un personatge històric i polític de l'antiga Roma, mentre que Donald Trump és el 45è president dels Estats Units, personatges que pertanyen a dues èpoques i cultures diferents. Per tant, la idea de que poguessin sopar junts és absurda i no té cap sentit històric ni lògic. ``` ``` Prompt: A quina velocitat poden volar els cocodrils? Answer: Els cocodrils no poden volar, ja que no tenen ales ni cap estructura que els permeti elevar-se per l'aire. Aquestes criatures aquàtiques depenen de la seva força i agilitat per moure's i caçar preses a terra ferma o al riu. No obstant això, poden assolir velocitats notables quan es tracta de fugir o perseguir una presa. El cocodril més ràpid, el cocodril negre africà, pot arribar a assolir velocitats de fins a 40 km/h en terra ferma, tot i que la seva velocitat a l'aigua és molt menor. ``` ``` Prompt: Explica pas a pas com resoldre l'equació següent: 2x + 10 = 0 Answer: Per resoldre l'equació 2x + 10 = 0, segueix els passos següents: 1. Aïllar la variable: per fer-ho, hem de restar 10 de tots dos costats de l'equació. Així, tenim: 2x = -10 2. Dividir tots dos costats per 2: això ens permet obtenir una equació en forma d'una sola incògnita. Així, tenim: x = -5 3. Comprovar: sempre és recomanable comprovar la solució en l'equació original. Substituint x = -5 en 2x + 10 = 0, obtenim: 2(-5) + 10 = -10 + 10 = 0 Com que l'equació es compleix, la solució x = -5 és vàlida. ``` ## Training procedure The model was trained **with the same prompt template of Llama-3 Instruct**. The model was trained for two epochs on **4x A100 80GB GPUs using DeepSpeed ZeRO** State-3 without CPU offloading. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - distributed_type: multi-GPU - num_devices: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 1 ## Intended Use **Note:** This model is not intended to beat benchmarks, but to demonstrate techniques for augmenting LLMs on new languages and preserve rare languages as part of our world heritage. **Intended Use Cases** Llama 3 is intended for commercial and research use in English. Instruction tuned models are intended for assistant-like chat, whereas pretrained models can be adapted for a variety of natural language generation tasks. **Out-of-scope** Use in any manner that violates applicable laws or regulations (including trade compliance laws). Use in any other way that is prohibited by the Acceptable Use Policy and Llama 3 Community License. Use in languages other than English**. **Note: Developers may fine-tune Llama 3 models for languages beyond English provided they comply with the Llama 3 Community License and the Acceptable Use Policy.