File size: 2,567 Bytes
5546e75
64a727f
 
 
 
 
 
 
 
 
 
5546e75
8bc3e9a
5546e75
12670c5
5546e75
af0e590
 
8bc3e9a
5546e75
95d4152
 
 
5546e75
95d4152
 
 
 
 
 
 
5546e75
c8f5d0d
5546e75
95d4152
5546e75
95d4152
5546e75
95d4152
5546e75
395a9c7
 
95d4152
af0e590
5546e75
af0e590
 
 
5546e75
95d4152
5546e75
95d4152
 
5546e75
af0e590
8bc3e9a
af0e590
95d4152
5546e75
95d4152
5546e75
95d4152
5546e75
95d4152
 
af0e590
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

---
license: apache-2.0
datasets:
- oscar-corpus/OSCAR-2109
language:
- en
- pl
pipeline_tag: text-generation
library_name: transformers
---

# B-GPT_en_pl_sequential

This is a bilingual GPT-2 style model. For the first half of training, this model was trained only on English data. In the second half of training, the model was trained on only Polish data. At the end of training, 50% of training data seen by the model is English and 50% is Polish. The tokenizer was trained on the same overall proportions of data as the language model at the final step. 

This model was released alongside the paper [On the Acquisition of Shared Grammatical Representations in Bilingual Language Models](https://arxiv.org/abs/2503.03962), which contains more details about the models. Additionally, the [OSF page](https://osf.io/5cw2e/) provides all code and data related to the project. 

## Model details:

All models are trained with a [CLS] (same as [BOS]) token prepended, and a [SEP] (same as [EOS]) token separating sequences.
For best results, make sure that [CLS] is prepended to your input sequence (see sample usage linked above)!
Details for this model specifically:

* Architecture: gpt2
* Parameters: 124770816
* Maximum sequence length: 512 tokens
* Training tokens: 12B
* Vocabulary size: 50000
* Compute cost: ~9 NVIDIA A6000 GPU hours
* CO2 Emission: 1.17 kg

Training dataset: [OSCAR 2021/09](https://huggingface.co/datasets/oscar-corpus/OSCAR-2109)

Checkpoints are taken at training steps: 0, 10000, 20000, 30000, 40000, 50000, 64000, 64010, 64020, 64030, 64040, 64050, 64060, 64070, 64080, 64090, 64100, 64110, 64120, 64130, 64140, 64150, 64160, 64170, 64180, 64190, 64200, 64300, 64400, 64500, 64600, 64700, 64800, 64900, 65000, 66000, 67000, 68000, 69000, 70000, 80000, 90000, 100000, 110000, 120000, 128000.

## Use This Model

Load the model:

Note: if you do not specify a revision, it will load the final checkpoint of the model. See above for the list of checkpoints. The checkpoint step is the name of the revision.

```
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("catherinearnett/B-GPT_en_nl_sequential")
model = AutoModelForCausalLM.from_pretrained("catherinearnett/B-GPT_en_nl_sequential", revision = "128000")
```

Text Generation:

```
from transformers import pipeline

pipe = pipeline("text-generation", model="catherinearnett/B-GPT_en_nl_sequential")
    
print(pipe("I am a", max_length=20)[0]["generated_text"])
```

## Citation

If you use this model, please cite:

```
```