catlove007
commited on
Commit
·
a354add
1
Parent(s):
3c9aa0d
Upload 4 files
Browse files- configuration_chatglm.py +103 -0
- modeling_chatglm.py +1512 -0
- test_modeling_chatglm.py +165 -0
- tokenization_chatglm.py +430 -0
configuration_chatglm.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" ChatGLM model configuration """
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
from transformers.utils import logging
|
5 |
+
|
6 |
+
logger = logging.get_logger(__name__)
|
7 |
+
|
8 |
+
|
9 |
+
class ChatGLMConfig(PretrainedConfig):
|
10 |
+
r"""
|
11 |
+
This is the configuration class to store the configuration of a [`~ChatGLMModel`].
|
12 |
+
It is used to instantiate an ChatGLM model according to the specified arguments, defining the model
|
13 |
+
architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of
|
14 |
+
the ChatGLM-6B [THUDM/ChatGLM-6B](https://huggingface.co/THUDM/chatglm-6b) architecture.
|
15 |
+
|
16 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used
|
17 |
+
to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
18 |
+
for more information.
|
19 |
+
|
20 |
+
|
21 |
+
Args:
|
22 |
+
vocab_size (`int`, *optional*, defaults to 150528):
|
23 |
+
Vocabulary size of the ChatGLM-6B model. Defines the number of different tokens that can be represented by the
|
24 |
+
`inputs_ids` passed when calling [`~ChatGLMModel`] or
|
25 |
+
[`~TFChatGLMModel`].
|
26 |
+
hidden_size (`int`, *optional*, defaults to 4096):
|
27 |
+
Dimension of the encoder layers and the pooler layer.
|
28 |
+
num_hidden_layers (`int`, *optional*, defaults to 28):
|
29 |
+
Number of hidden layers in the Transformer encoder.
|
30 |
+
num_attention_heads (`int`, *optional*, defaults to 32):
|
31 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
32 |
+
inner_hidden_size (`int`, *optional*, defaults to 16384):
|
33 |
+
Dimension of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
34 |
+
max_sequence_length (`int`, *optional*, defaults to 512):
|
35 |
+
The maximum sequence length that this model might ever be used with.
|
36 |
+
Typically set this to something large just in case (e.g., 512 or 1024 or 2048).
|
37 |
+
layernorm_epsilon (`float`, *optional*, defaults to 1e-5):
|
38 |
+
The epsilon used by the layer normalization layers.
|
39 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
40 |
+
Whether the model should return the last key/values attentions (not used by all models).
|
41 |
+
Example:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from configuration_chatglm import ChatGLMConfig
|
45 |
+
>>> from modeling_chatglm import ChatGLMModel
|
46 |
+
|
47 |
+
>>> # Initializing a ChatGLM-6B THUDM/ChatGLM-6B style configuration
|
48 |
+
>>> configuration = ChatGLMConfig()
|
49 |
+
|
50 |
+
>>> # Initializing a model from the THUDM/ChatGLM-6B style configuration
|
51 |
+
>>> model = ChatGLMModel(configuration)
|
52 |
+
|
53 |
+
>>> # Accessing the model configuration
|
54 |
+
>>> configuration = model.config
|
55 |
+
```
|
56 |
+
"""
|
57 |
+
model_type = "chatglm"
|
58 |
+
|
59 |
+
def __init__(
|
60 |
+
self,
|
61 |
+
vocab_size=150528,
|
62 |
+
hidden_size=4096,
|
63 |
+
num_layers=28,
|
64 |
+
num_attention_heads=32,
|
65 |
+
layernorm_epsilon=1e-5,
|
66 |
+
use_cache=False,
|
67 |
+
bos_token_id=150004,
|
68 |
+
eos_token_id=150005,
|
69 |
+
mask_token_id=150000,
|
70 |
+
gmask_token_id=150001,
|
71 |
+
pad_token_id=0,
|
72 |
+
max_sequence_length=2048,
|
73 |
+
inner_hidden_size=16384,
|
74 |
+
position_encoding_2d=True,
|
75 |
+
quantization_bit=0,
|
76 |
+
pre_seq_len=None,
|
77 |
+
prefix_projection=False,
|
78 |
+
**kwargs
|
79 |
+
):
|
80 |
+
self.num_layers = num_layers
|
81 |
+
self.vocab_size = vocab_size
|
82 |
+
self.hidden_size = hidden_size
|
83 |
+
self.num_attention_heads = num_attention_heads
|
84 |
+
self.max_sequence_length = max_sequence_length
|
85 |
+
self.layernorm_epsilon = layernorm_epsilon
|
86 |
+
self.inner_hidden_size = inner_hidden_size
|
87 |
+
self.use_cache = use_cache
|
88 |
+
self.bos_token_id = bos_token_id
|
89 |
+
self.eos_token_id = eos_token_id
|
90 |
+
self.pad_token_id = pad_token_id
|
91 |
+
self.mask_token_id = mask_token_id
|
92 |
+
self.gmask_token_id = gmask_token_id
|
93 |
+
self.position_encoding_2d = position_encoding_2d
|
94 |
+
self.quantization_bit = quantization_bit
|
95 |
+
self.pre_seq_len = pre_seq_len
|
96 |
+
self.prefix_projection = prefix_projection
|
97 |
+
|
98 |
+
super().__init__(
|
99 |
+
pad_token_id=pad_token_id,
|
100 |
+
bos_token_id=bos_token_id,
|
101 |
+
eos_token_id=eos_token_id,
|
102 |
+
**kwargs
|
103 |
+
)
|
modeling_chatglm.py
ADDED
@@ -0,0 +1,1512 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" PyTorch ChatGLM model. """
|
2 |
+
|
3 |
+
import math
|
4 |
+
import copy
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
import re
|
8 |
+
import sys
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import nn
|
14 |
+
from torch.nn import CrossEntropyLoss, LayerNorm
|
15 |
+
from torch.nn.utils import skip_init
|
16 |
+
from typing import Optional, Tuple, Union, List, Callable, Dict, Any
|
17 |
+
|
18 |
+
from transformers.utils import (
|
19 |
+
add_code_sample_docstrings,
|
20 |
+
add_start_docstrings,
|
21 |
+
add_start_docstrings_to_model_forward,
|
22 |
+
)
|
23 |
+
from transformers.modeling_outputs import (
|
24 |
+
BaseModelOutputWithPast,
|
25 |
+
CausalLMOutputWithPast,
|
26 |
+
SequenceClassifierOutput,
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
)
|
29 |
+
from transformers.modeling_utils import PreTrainedModel
|
30 |
+
from transformers.utils import logging
|
31 |
+
from transformers.generation.logits_process import LogitsProcessor
|
32 |
+
from transformers.generation.utils import LogitsProcessorList, StoppingCriteriaList, GenerationConfig, ModelOutput
|
33 |
+
|
34 |
+
from .configuration_chatglm import ChatGLMConfig
|
35 |
+
|
36 |
+
# flags required to enable jit fusion kernels
|
37 |
+
|
38 |
+
if sys.platform != 'darwin':
|
39 |
+
torch._C._jit_set_profiling_mode(False)
|
40 |
+
torch._C._jit_set_profiling_executor(False)
|
41 |
+
torch._C._jit_override_can_fuse_on_cpu(True)
|
42 |
+
torch._C._jit_override_can_fuse_on_gpu(True)
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
_CHECKPOINT_FOR_DOC = "THUDM/ChatGLM-6B"
|
47 |
+
_CONFIG_FOR_DOC = "ChatGLM6BConfig"
|
48 |
+
|
49 |
+
CHATGLM_6B_PRETRAINED_MODEL_ARCHIVE_LIST = [
|
50 |
+
"THUDM/chatglm-6b",
|
51 |
+
# See all ChatGLM-6B models at https://huggingface.co/models?filter=chatglm
|
52 |
+
]
|
53 |
+
|
54 |
+
|
55 |
+
class InvalidScoreLogitsProcessor(LogitsProcessor):
|
56 |
+
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
|
57 |
+
if torch.isnan(scores).any() or torch.isinf(scores).any():
|
58 |
+
scores.zero_()
|
59 |
+
scores[..., 5] = 5e4
|
60 |
+
return scores
|
61 |
+
|
62 |
+
|
63 |
+
def load_tf_weights_in_chatglm_6b(model, config, tf_checkpoint_path):
|
64 |
+
"""Load tf checkpoints in a pytorch model."""
|
65 |
+
try:
|
66 |
+
import re
|
67 |
+
|
68 |
+
import numpy as np
|
69 |
+
import tensorflow as tf
|
70 |
+
except ImportError:
|
71 |
+
logger.error(
|
72 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
73 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
74 |
+
)
|
75 |
+
raise
|
76 |
+
tf_path = os.path.abspath(tf_checkpoint_path)
|
77 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
78 |
+
# Load weights from TF model
|
79 |
+
init_vars = tf.train.list_variables(tf_path)
|
80 |
+
names = []
|
81 |
+
arrays = []
|
82 |
+
for name, shape in init_vars:
|
83 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
84 |
+
array = tf.train.load_variable(tf_path, name)
|
85 |
+
names.append(name)
|
86 |
+
arrays.append(array)
|
87 |
+
|
88 |
+
for name, array in zip(names, arrays):
|
89 |
+
name = name.split("/")
|
90 |
+
# adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
|
91 |
+
# which are not required for using pretrained model
|
92 |
+
if any(
|
93 |
+
n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
|
94 |
+
for n in name
|
95 |
+
):
|
96 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
97 |
+
continue
|
98 |
+
pointer = model
|
99 |
+
for m_name in name:
|
100 |
+
if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
|
101 |
+
scope_names = re.split(r"_(\d+)", m_name)
|
102 |
+
else:
|
103 |
+
scope_names = [m_name]
|
104 |
+
if scope_names[0] == "kernel" or scope_names[0] == "gamma":
|
105 |
+
pointer = getattr(pointer, "weight")
|
106 |
+
elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
|
107 |
+
pointer = getattr(pointer, "bias")
|
108 |
+
elif scope_names[0] == "output_weights":
|
109 |
+
pointer = getattr(pointer, "weight")
|
110 |
+
elif scope_names[0] == "squad":
|
111 |
+
pointer = getattr(pointer, "classifier")
|
112 |
+
else:
|
113 |
+
try:
|
114 |
+
pointer = getattr(pointer, scope_names[0])
|
115 |
+
except AttributeError:
|
116 |
+
logger.info(f"Skipping {'/'.join(name)}")
|
117 |
+
continue
|
118 |
+
if len(scope_names) >= 2:
|
119 |
+
num = int(scope_names[1])
|
120 |
+
pointer = pointer[num]
|
121 |
+
if m_name[-11:] == "_embeddings":
|
122 |
+
pointer = getattr(pointer, "weight")
|
123 |
+
elif m_name == "kernel":
|
124 |
+
array = np.transpose(array)
|
125 |
+
try:
|
126 |
+
assert (
|
127 |
+
pointer.shape == array.shape
|
128 |
+
), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched"
|
129 |
+
except AssertionError as e:
|
130 |
+
e.args += (pointer.shape, array.shape)
|
131 |
+
raise
|
132 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
133 |
+
pointer.data = torch.from_numpy(array)
|
134 |
+
return model
|
135 |
+
|
136 |
+
|
137 |
+
class PrefixEncoder(torch.nn.Module):
|
138 |
+
"""
|
139 |
+
The torch.nn model to encode the prefix
|
140 |
+
Input shape: (batch-size, prefix-length)
|
141 |
+
Output shape: (batch-size, prefix-length, 2*layers*hidden)
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, config):
|
145 |
+
super().__init__()
|
146 |
+
self.prefix_projection = config.prefix_projection
|
147 |
+
if self.prefix_projection:
|
148 |
+
# Use a two-layer MLP to encode the prefix
|
149 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
|
150 |
+
self.trans = torch.nn.Sequential(
|
151 |
+
torch.nn.Linear(config.hidden_size, config.hidden_size),
|
152 |
+
torch.nn.Tanh(),
|
153 |
+
torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
|
154 |
+
)
|
155 |
+
else:
|
156 |
+
self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)
|
157 |
+
|
158 |
+
def forward(self, prefix: torch.Tensor):
|
159 |
+
if self.prefix_projection:
|
160 |
+
prefix_tokens = self.embedding(prefix)
|
161 |
+
past_key_values = self.trans(prefix_tokens)
|
162 |
+
else:
|
163 |
+
past_key_values = self.embedding(prefix)
|
164 |
+
return past_key_values
|
165 |
+
|
166 |
+
|
167 |
+
@torch.jit.script
|
168 |
+
def gelu_impl(x):
|
169 |
+
"""OpenAI's gelu implementation."""
|
170 |
+
return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
|
171 |
+
(1.0 + 0.044715 * x * x)))
|
172 |
+
|
173 |
+
|
174 |
+
def gelu(x):
|
175 |
+
return gelu_impl(x)
|
176 |
+
|
177 |
+
|
178 |
+
class RotaryEmbedding(torch.nn.Module):
|
179 |
+
def __init__(self, dim, base=10000, precision=torch.half, learnable=False):
|
180 |
+
super().__init__()
|
181 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
182 |
+
inv_freq = inv_freq.half()
|
183 |
+
self.learnable = learnable
|
184 |
+
if learnable:
|
185 |
+
self.inv_freq = torch.nn.Parameter(inv_freq)
|
186 |
+
self.max_seq_len_cached = None
|
187 |
+
else:
|
188 |
+
self.register_buffer('inv_freq', inv_freq)
|
189 |
+
self.max_seq_len_cached = None
|
190 |
+
self.cos_cached = None
|
191 |
+
self.sin_cached = None
|
192 |
+
self.precision = precision
|
193 |
+
|
194 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys,
|
195 |
+
error_msgs):
|
196 |
+
pass
|
197 |
+
|
198 |
+
def forward(self, x, seq_dim=1, seq_len=None):
|
199 |
+
if seq_len is None:
|
200 |
+
seq_len = x.shape[seq_dim]
|
201 |
+
if self.max_seq_len_cached is None or (seq_len > self.max_seq_len_cached):
|
202 |
+
self.max_seq_len_cached = None if self.learnable else seq_len
|
203 |
+
t = torch.arange(seq_len, device=x.device, dtype=self.inv_freq.dtype)
|
204 |
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
205 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
206 |
+
emb = torch.cat((freqs, freqs), dim=-1).to(x.device)
|
207 |
+
if self.precision == torch.bfloat16:
|
208 |
+
emb = emb.float()
|
209 |
+
|
210 |
+
# [sx, 1 (b * np), hn]
|
211 |
+
cos_cached = emb.cos()[:, None, :]
|
212 |
+
sin_cached = emb.sin()[:, None, :]
|
213 |
+
if self.precision == torch.bfloat16:
|
214 |
+
cos_cached = cos_cached.bfloat16()
|
215 |
+
sin_cached = sin_cached.bfloat16()
|
216 |
+
if self.learnable:
|
217 |
+
return cos_cached, sin_cached
|
218 |
+
self.cos_cached, self.sin_cached = cos_cached, sin_cached
|
219 |
+
return self.cos_cached[:seq_len, ...], self.sin_cached[:seq_len, ...]
|
220 |
+
|
221 |
+
def _apply(self, fn):
|
222 |
+
if self.cos_cached is not None:
|
223 |
+
self.cos_cached = fn(self.cos_cached)
|
224 |
+
if self.sin_cached is not None:
|
225 |
+
self.sin_cached = fn(self.sin_cached)
|
226 |
+
return super()._apply(fn)
|
227 |
+
|
228 |
+
|
229 |
+
def rotate_half(x):
|
230 |
+
x1, x2 = x[..., :x.shape[-1] // 2], x[..., x.shape[-1] // 2:]
|
231 |
+
return torch.cat((-x2, x1), dim=x1.ndim - 1) # dim=-1 triggers a bug in earlier torch versions
|
232 |
+
|
233 |
+
|
234 |
+
@torch.jit.script
|
235 |
+
def apply_rotary_pos_emb_index(q, k, cos, sin, position_id):
|
236 |
+
# position_id: [sq, b], q, k: [sq, b, np, hn], cos: [sq, 1, hn] -> [sq, b, 1, hn]
|
237 |
+
cos, sin = F.embedding(position_id, cos.squeeze(1)).unsqueeze(2), \
|
238 |
+
F.embedding(position_id, sin.squeeze(1)).unsqueeze(2)
|
239 |
+
q, k = (q * cos) + (rotate_half(q) * sin), (k * cos) + (rotate_half(k) * sin)
|
240 |
+
return q, k
|
241 |
+
|
242 |
+
|
243 |
+
def attention_fn(
|
244 |
+
self,
|
245 |
+
query_layer,
|
246 |
+
key_layer,
|
247 |
+
value_layer,
|
248 |
+
attention_mask,
|
249 |
+
hidden_size_per_partition,
|
250 |
+
layer_id,
|
251 |
+
layer_past=None,
|
252 |
+
scaling_attention_score=True,
|
253 |
+
use_cache=False,
|
254 |
+
):
|
255 |
+
if layer_past is not None:
|
256 |
+
past_key, past_value = layer_past[0], layer_past[1]
|
257 |
+
key_layer = torch.cat((past_key, key_layer), dim=0)
|
258 |
+
value_layer = torch.cat((past_value, value_layer), dim=0)
|
259 |
+
|
260 |
+
# seqlen, batch, num_attention_heads, hidden_size_per_attention_head
|
261 |
+
seq_len, b, nh, hidden_size = key_layer.shape
|
262 |
+
|
263 |
+
if use_cache:
|
264 |
+
present = (key_layer, value_layer)
|
265 |
+
else:
|
266 |
+
present = None
|
267 |
+
|
268 |
+
query_key_layer_scaling_coeff = float(layer_id + 1)
|
269 |
+
if scaling_attention_score:
|
270 |
+
query_layer = query_layer / (math.sqrt(hidden_size) * query_key_layer_scaling_coeff)
|
271 |
+
|
272 |
+
# ===================================
|
273 |
+
# Raw attention scores. [b, np, s, s]
|
274 |
+
# ===================================
|
275 |
+
|
276 |
+
# [b, np, sq, sk]
|
277 |
+
output_size = (query_layer.size(1), query_layer.size(2), query_layer.size(0), key_layer.size(0))
|
278 |
+
|
279 |
+
# [sq, b, np, hn] -> [sq, b * np, hn]
|
280 |
+
query_layer = query_layer.view(output_size[2], output_size[0] * output_size[1], -1)
|
281 |
+
# [sk, b, np, hn] -> [sk, b * np, hn]
|
282 |
+
key_layer = key_layer.view(output_size[3], output_size[0] * output_size[1], -1)
|
283 |
+
|
284 |
+
matmul_result = torch.zeros(
|
285 |
+
1, 1, 1,
|
286 |
+
dtype=query_layer.dtype,
|
287 |
+
device=query_layer.device,
|
288 |
+
)
|
289 |
+
|
290 |
+
matmul_result = torch.baddbmm(
|
291 |
+
matmul_result,
|
292 |
+
query_layer.transpose(0, 1), # [b * np, sq, hn]
|
293 |
+
key_layer.transpose(0, 1).transpose(1, 2), # [b * np, hn, sk]
|
294 |
+
beta=0.0,
|
295 |
+
alpha=1.0,
|
296 |
+
)
|
297 |
+
|
298 |
+
# change view to [b, np, sq, sk]
|
299 |
+
attention_scores = matmul_result.view(*output_size)
|
300 |
+
|
301 |
+
if self.scale_mask_softmax:
|
302 |
+
self.scale_mask_softmax.scale = query_key_layer_scaling_coeff
|
303 |
+
attention_probs = self.scale_mask_softmax(attention_scores, attention_mask.contiguous())
|
304 |
+
else:
|
305 |
+
if not (attention_mask == 0).all():
|
306 |
+
# if auto-regressive, skip
|
307 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
308 |
+
dtype = attention_scores.dtype
|
309 |
+
attention_scores = attention_scores.float()
|
310 |
+
attention_scores = attention_scores * query_key_layer_scaling_coeff
|
311 |
+
|
312 |
+
attention_probs = F.softmax(attention_scores, dim=-1)
|
313 |
+
|
314 |
+
attention_probs = attention_probs.type(dtype)
|
315 |
+
|
316 |
+
# =========================
|
317 |
+
# Context layer. [sq, b, hp]
|
318 |
+
# =========================
|
319 |
+
|
320 |
+
# value_layer -> context layer.
|
321 |
+
# [sk, b, np, hn] --> [b, np, sq, hn]
|
322 |
+
|
323 |
+
# context layer shape: [b, np, sq, hn]
|
324 |
+
output_size = (value_layer.size(1), value_layer.size(2), query_layer.size(0), value_layer.size(3))
|
325 |
+
|
326 |
+
# change view [sk, b * np, hn]
|
327 |
+
value_layer = value_layer.view(value_layer.size(0), output_size[0] * output_size[1], -1)
|
328 |
+
|
329 |
+
# change view [b * np, sq, sk]
|
330 |
+
attention_probs = attention_probs.view(output_size[0] * output_size[1], output_size[2], -1)
|
331 |
+
|
332 |
+
# matmul: [b * np, sq, hn]
|
333 |
+
context_layer = torch.bmm(attention_probs, value_layer.transpose(0, 1))
|
334 |
+
|
335 |
+
# change view [b, np, sq, hn]
|
336 |
+
context_layer = context_layer.view(*output_size)
|
337 |
+
|
338 |
+
# [b, np, sq, hn] --> [sq, b, np, hn]
|
339 |
+
context_layer = context_layer.permute(2, 0, 1, 3).contiguous()
|
340 |
+
|
341 |
+
# [sq, b, np, hn] --> [sq, b, hp]
|
342 |
+
new_context_layer_shape = context_layer.size()[:-2] + (hidden_size_per_partition,)
|
343 |
+
context_layer = context_layer.view(*new_context_layer_shape)
|
344 |
+
|
345 |
+
outputs = (context_layer, present, attention_probs)
|
346 |
+
|
347 |
+
return outputs
|
348 |
+
|
349 |
+
|
350 |
+
def default_init(cls, *args, **kwargs):
|
351 |
+
return cls(*args, **kwargs)
|
352 |
+
|
353 |
+
|
354 |
+
class SelfAttention(torch.nn.Module):
|
355 |
+
def __init__(self, hidden_size, num_attention_heads,
|
356 |
+
layer_id, hidden_size_per_attention_head=None, bias=True,
|
357 |
+
params_dtype=torch.float, position_encoding_2d=True, empty_init=True):
|
358 |
+
if empty_init:
|
359 |
+
init_method = skip_init
|
360 |
+
else:
|
361 |
+
init_method = default_init
|
362 |
+
super(SelfAttention, self).__init__()
|
363 |
+
|
364 |
+
self.layer_id = layer_id
|
365 |
+
self.hidden_size = hidden_size
|
366 |
+
self.hidden_size_per_partition = hidden_size
|
367 |
+
self.num_attention_heads = num_attention_heads
|
368 |
+
self.num_attention_heads_per_partition = num_attention_heads
|
369 |
+
self.position_encoding_2d = position_encoding_2d
|
370 |
+
self.rotary_emb = RotaryEmbedding(
|
371 |
+
self.hidden_size // (self.num_attention_heads * 2)
|
372 |
+
if position_encoding_2d
|
373 |
+
else self.hidden_size // self.num_attention_heads,
|
374 |
+
base=10000,
|
375 |
+
precision=torch.half,
|
376 |
+
learnable=False,
|
377 |
+
)
|
378 |
+
|
379 |
+
self.scale_mask_softmax = None
|
380 |
+
|
381 |
+
if hidden_size_per_attention_head is None:
|
382 |
+
self.hidden_size_per_attention_head = hidden_size // num_attention_heads
|
383 |
+
else:
|
384 |
+
self.hidden_size_per_attention_head = hidden_size_per_attention_head
|
385 |
+
|
386 |
+
self.inner_hidden_size = num_attention_heads * self.hidden_size_per_attention_head
|
387 |
+
|
388 |
+
# Strided linear layer.
|
389 |
+
self.query_key_value = init_method(
|
390 |
+
torch.nn.Linear,
|
391 |
+
hidden_size,
|
392 |
+
3 * self.inner_hidden_size,
|
393 |
+
bias=bias,
|
394 |
+
dtype=params_dtype,
|
395 |
+
)
|
396 |
+
|
397 |
+
self.dense = init_method(
|
398 |
+
torch.nn.Linear,
|
399 |
+
self.inner_hidden_size,
|
400 |
+
hidden_size,
|
401 |
+
bias=bias,
|
402 |
+
dtype=params_dtype,
|
403 |
+
)
|
404 |
+
|
405 |
+
@staticmethod
|
406 |
+
def attention_mask_func(attention_scores, attention_mask):
|
407 |
+
attention_scores.masked_fill_(attention_mask, -10000.0)
|
408 |
+
return attention_scores
|
409 |
+
|
410 |
+
def split_tensor_along_last_dim(self, tensor, num_partitions,
|
411 |
+
contiguous_split_chunks=False):
|
412 |
+
"""Split a tensor along its last dimension.
|
413 |
+
Arguments:
|
414 |
+
tensor: input tensor.
|
415 |
+
num_partitions: number of partitions to split the tensor
|
416 |
+
contiguous_split_chunks: If True, make each chunk contiguous
|
417 |
+
in memory.
|
418 |
+
"""
|
419 |
+
# Get the size and dimension.
|
420 |
+
last_dim = tensor.dim() - 1
|
421 |
+
last_dim_size = tensor.size()[last_dim] // num_partitions
|
422 |
+
# Split.
|
423 |
+
tensor_list = torch.split(tensor, last_dim_size, dim=last_dim)
|
424 |
+
# Note: torch.split does not create contiguous tensors by default.
|
425 |
+
if contiguous_split_chunks:
|
426 |
+
return tuple(chunk.contiguous() for chunk in tensor_list)
|
427 |
+
|
428 |
+
return tensor_list
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
hidden_states: torch.Tensor,
|
433 |
+
position_ids,
|
434 |
+
attention_mask: torch.Tensor,
|
435 |
+
layer_id,
|
436 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
437 |
+
use_cache: bool = False,
|
438 |
+
output_attentions: bool = False,
|
439 |
+
):
|
440 |
+
"""
|
441 |
+
hidden_states: [seq_len, batch, hidden_size]
|
442 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
443 |
+
"""
|
444 |
+
|
445 |
+
# [seq_len, batch, 3 * hidden_size]
|
446 |
+
mixed_raw_layer = self.query_key_value(hidden_states)
|
447 |
+
|
448 |
+
# [seq_len, batch, 3 * hidden_size] --> [seq_len, batch, num_attention_heads, 3 * hidden_size_per_attention_head]
|
449 |
+
new_tensor_shape = mixed_raw_layer.size()[:-1] + (
|
450 |
+
self.num_attention_heads_per_partition,
|
451 |
+
3 * self.hidden_size_per_attention_head,
|
452 |
+
)
|
453 |
+
mixed_raw_layer = mixed_raw_layer.view(*new_tensor_shape)
|
454 |
+
|
455 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
456 |
+
(query_layer, key_layer, value_layer) = self.split_tensor_along_last_dim(mixed_raw_layer, 3)
|
457 |
+
|
458 |
+
if self.position_encoding_2d:
|
459 |
+
q1, q2 = query_layer.chunk(2, dim=(query_layer.ndim - 1))
|
460 |
+
k1, k2 = key_layer.chunk(2, dim=(key_layer.ndim - 1))
|
461 |
+
cos, sin = self.rotary_emb(q1, seq_len=position_ids.max() + 1)
|
462 |
+
position_ids, block_position_ids = position_ids[:, 0, :].transpose(0, 1).contiguous(), \
|
463 |
+
position_ids[:, 1, :].transpose(0, 1).contiguous()
|
464 |
+
q1, k1 = apply_rotary_pos_emb_index(q1, k1, cos, sin, position_ids)
|
465 |
+
q2, k2 = apply_rotary_pos_emb_index(q2, k2, cos, sin, block_position_ids)
|
466 |
+
query_layer = torch.concat([q1, q2], dim=(q1.ndim - 1))
|
467 |
+
key_layer = torch.concat([k1, k2], dim=(k1.ndim - 1))
|
468 |
+
else:
|
469 |
+
position_ids = position_ids.transpose(0, 1)
|
470 |
+
cos, sin = self.rotary_emb(value_layer, seq_len=position_ids.max() + 1)
|
471 |
+
# [seq_len, batch, num_attention_heads, hidden_size_per_attention_head]
|
472 |
+
query_layer, key_layer = apply_rotary_pos_emb_index(query_layer, key_layer, cos, sin, position_ids)
|
473 |
+
|
474 |
+
# [seq_len, batch, hidden_size]
|
475 |
+
context_layer, present, attention_probs = attention_fn(
|
476 |
+
self=self,
|
477 |
+
query_layer=query_layer,
|
478 |
+
key_layer=key_layer,
|
479 |
+
value_layer=value_layer,
|
480 |
+
attention_mask=attention_mask,
|
481 |
+
hidden_size_per_partition=self.hidden_size_per_partition,
|
482 |
+
layer_id=layer_id,
|
483 |
+
layer_past=layer_past,
|
484 |
+
use_cache=use_cache
|
485 |
+
)
|
486 |
+
|
487 |
+
output = self.dense(context_layer)
|
488 |
+
|
489 |
+
outputs = (output, present)
|
490 |
+
|
491 |
+
if output_attentions:
|
492 |
+
outputs += (attention_probs,)
|
493 |
+
|
494 |
+
return outputs # output, present, attention_probs
|
495 |
+
|
496 |
+
|
497 |
+
class GEGLU(torch.nn.Module):
|
498 |
+
def __init__(self):
|
499 |
+
super().__init__()
|
500 |
+
self.activation_fn = F.gelu
|
501 |
+
|
502 |
+
def forward(self, x):
|
503 |
+
# dim=-1 breaks in jit for pt<1.10
|
504 |
+
x1, x2 = x.chunk(2, dim=(x.ndim - 1))
|
505 |
+
return x1 * self.activation_fn(x2)
|
506 |
+
|
507 |
+
|
508 |
+
class GLU(torch.nn.Module):
|
509 |
+
def __init__(self, hidden_size, inner_hidden_size=None,
|
510 |
+
layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
|
511 |
+
super(GLU, self).__init__()
|
512 |
+
if empty_init:
|
513 |
+
init_method = skip_init
|
514 |
+
else:
|
515 |
+
init_method = default_init
|
516 |
+
self.layer_id = layer_id
|
517 |
+
self.activation_func = activation_func
|
518 |
+
|
519 |
+
# Project to 4h.
|
520 |
+
self.hidden_size = hidden_size
|
521 |
+
if inner_hidden_size is None:
|
522 |
+
inner_hidden_size = 4 * hidden_size
|
523 |
+
self.inner_hidden_size = inner_hidden_size
|
524 |
+
self.dense_h_to_4h = init_method(
|
525 |
+
torch.nn.Linear,
|
526 |
+
self.hidden_size,
|
527 |
+
self.inner_hidden_size,
|
528 |
+
bias=bias,
|
529 |
+
dtype=params_dtype,
|
530 |
+
)
|
531 |
+
# Project back to h.
|
532 |
+
self.dense_4h_to_h = init_method(
|
533 |
+
torch.nn.Linear,
|
534 |
+
self.inner_hidden_size,
|
535 |
+
self.hidden_size,
|
536 |
+
bias=bias,
|
537 |
+
dtype=params_dtype,
|
538 |
+
)
|
539 |
+
|
540 |
+
def forward(self, hidden_states):
|
541 |
+
"""
|
542 |
+
hidden_states: [seq_len, batch, hidden_size]
|
543 |
+
"""
|
544 |
+
|
545 |
+
# [seq_len, batch, inner_hidden_size]
|
546 |
+
intermediate_parallel = self.dense_h_to_4h(hidden_states)
|
547 |
+
|
548 |
+
intermediate_parallel = self.activation_func(intermediate_parallel)
|
549 |
+
|
550 |
+
output = self.dense_4h_to_h(intermediate_parallel)
|
551 |
+
|
552 |
+
return output
|
553 |
+
|
554 |
+
|
555 |
+
class GLMBlock(torch.nn.Module):
|
556 |
+
def __init__(
|
557 |
+
self,
|
558 |
+
hidden_size,
|
559 |
+
num_attention_heads,
|
560 |
+
layernorm_epsilon,
|
561 |
+
layer_id,
|
562 |
+
inner_hidden_size=None,
|
563 |
+
hidden_size_per_attention_head=None,
|
564 |
+
layernorm=LayerNorm,
|
565 |
+
use_bias=True,
|
566 |
+
params_dtype=torch.float,
|
567 |
+
num_layers=28,
|
568 |
+
position_encoding_2d=True,
|
569 |
+
empty_init=True
|
570 |
+
):
|
571 |
+
super(GLMBlock, self).__init__()
|
572 |
+
# Set output layer initialization if not provided.
|
573 |
+
|
574 |
+
self.layer_id = layer_id
|
575 |
+
|
576 |
+
# Layernorm on the input data.
|
577 |
+
self.input_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
578 |
+
|
579 |
+
self.position_encoding_2d = position_encoding_2d
|
580 |
+
|
581 |
+
# Self attention.
|
582 |
+
self.attention = SelfAttention(
|
583 |
+
hidden_size,
|
584 |
+
num_attention_heads,
|
585 |
+
layer_id,
|
586 |
+
hidden_size_per_attention_head=hidden_size_per_attention_head,
|
587 |
+
bias=use_bias,
|
588 |
+
params_dtype=params_dtype,
|
589 |
+
position_encoding_2d=self.position_encoding_2d,
|
590 |
+
empty_init=empty_init
|
591 |
+
)
|
592 |
+
|
593 |
+
# Layernorm on the input data.
|
594 |
+
self.post_attention_layernorm = layernorm(hidden_size, eps=layernorm_epsilon)
|
595 |
+
|
596 |
+
self.num_layers = num_layers
|
597 |
+
|
598 |
+
# GLU
|
599 |
+
self.mlp = GLU(
|
600 |
+
hidden_size,
|
601 |
+
inner_hidden_size=inner_hidden_size,
|
602 |
+
bias=use_bias,
|
603 |
+
layer_id=layer_id,
|
604 |
+
params_dtype=params_dtype,
|
605 |
+
empty_init=empty_init
|
606 |
+
)
|
607 |
+
|
608 |
+
def forward(
|
609 |
+
self,
|
610 |
+
hidden_states: torch.Tensor,
|
611 |
+
position_ids,
|
612 |
+
attention_mask: torch.Tensor,
|
613 |
+
layer_id,
|
614 |
+
layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
615 |
+
use_cache: bool = False,
|
616 |
+
output_attentions: bool = False,
|
617 |
+
):
|
618 |
+
"""
|
619 |
+
hidden_states: [seq_len, batch, hidden_size]
|
620 |
+
attention_mask: [(1, 1), seq_len, seq_len]
|
621 |
+
"""
|
622 |
+
|
623 |
+
# Layer norm at the begining of the transformer layer.
|
624 |
+
# [seq_len, batch, hidden_size]
|
625 |
+
attention_input = self.input_layernorm(hidden_states)
|
626 |
+
|
627 |
+
# Self attention.
|
628 |
+
attention_outputs = self.attention(
|
629 |
+
attention_input,
|
630 |
+
position_ids,
|
631 |
+
attention_mask=attention_mask,
|
632 |
+
layer_id=layer_id,
|
633 |
+
layer_past=layer_past,
|
634 |
+
use_cache=use_cache,
|
635 |
+
output_attentions=output_attentions
|
636 |
+
)
|
637 |
+
|
638 |
+
attention_output = attention_outputs[0]
|
639 |
+
|
640 |
+
outputs = attention_outputs[1:]
|
641 |
+
|
642 |
+
# Residual connection.
|
643 |
+
alpha = (2 * self.num_layers) ** 0.5
|
644 |
+
hidden_states = attention_input * alpha + attention_output
|
645 |
+
|
646 |
+
mlp_input = self.post_attention_layernorm(hidden_states)
|
647 |
+
|
648 |
+
# MLP.
|
649 |
+
mlp_output = self.mlp(mlp_input)
|
650 |
+
|
651 |
+
# Second residual connection.
|
652 |
+
output = mlp_input * alpha + mlp_output
|
653 |
+
|
654 |
+
if use_cache:
|
655 |
+
outputs = (output,) + outputs
|
656 |
+
else:
|
657 |
+
outputs = (output,) + outputs[1:]
|
658 |
+
|
659 |
+
return outputs # hidden_states, present, attentions
|
660 |
+
|
661 |
+
|
662 |
+
class ChatGLMPreTrainedModel(PreTrainedModel):
|
663 |
+
"""
|
664 |
+
An abstract class to handle weights initialization and
|
665 |
+
a simple interface for downloading and loading pretrained models.
|
666 |
+
"""
|
667 |
+
|
668 |
+
is_parallelizable = False
|
669 |
+
supports_gradient_checkpointing = True
|
670 |
+
config_class = ChatGLMConfig
|
671 |
+
base_model_prefix = "transformer"
|
672 |
+
_no_split_modules = ["GLMBlock"]
|
673 |
+
|
674 |
+
def __init__(self, *inputs, **kwargs):
|
675 |
+
super().__init__(*inputs, **kwargs)
|
676 |
+
|
677 |
+
def _init_weights(self, module: nn.Module):
|
678 |
+
"""Initialize the weights."""
|
679 |
+
return
|
680 |
+
|
681 |
+
def get_masks(self, input_ids, device):
|
682 |
+
batch_size, seq_length = input_ids.shape
|
683 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
684 |
+
attention_mask = torch.ones((batch_size, seq_length, seq_length), device=device)
|
685 |
+
attention_mask.tril_()
|
686 |
+
for i, context_length in enumerate(context_lengths):
|
687 |
+
attention_mask[i, :, :context_length] = 1
|
688 |
+
attention_mask.unsqueeze_(1)
|
689 |
+
attention_mask = (attention_mask < 0.5).bool()
|
690 |
+
|
691 |
+
return attention_mask
|
692 |
+
|
693 |
+
def get_position_ids(self, input_ids, mask_positions, device, use_gmasks=None):
|
694 |
+
batch_size, seq_length = input_ids.shape
|
695 |
+
if use_gmasks is None:
|
696 |
+
use_gmasks = [False] * batch_size
|
697 |
+
context_lengths = [seq.tolist().index(self.config.bos_token_id) for seq in input_ids]
|
698 |
+
if self.position_encoding_2d:
|
699 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
700 |
+
for i, context_length in enumerate(context_lengths):
|
701 |
+
position_ids[i, context_length:] = mask_positions[i]
|
702 |
+
block_position_ids = [torch.cat((
|
703 |
+
torch.zeros(context_length, dtype=torch.long, device=device),
|
704 |
+
torch.arange(seq_length - context_length, dtype=torch.long, device=device) + 1
|
705 |
+
)) for context_length in context_lengths]
|
706 |
+
block_position_ids = torch.stack(block_position_ids, dim=0)
|
707 |
+
position_ids = torch.stack((position_ids, block_position_ids), dim=1)
|
708 |
+
else:
|
709 |
+
position_ids = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0).repeat(batch_size, 1)
|
710 |
+
for i, context_length in enumerate(context_lengths):
|
711 |
+
if not use_gmasks[i]:
|
712 |
+
position_ids[i, context_length:] = mask_positions[i]
|
713 |
+
|
714 |
+
return position_ids
|
715 |
+
|
716 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
717 |
+
if isinstance(module, ChatGLMModel):
|
718 |
+
module.gradient_checkpointing = value
|
719 |
+
|
720 |
+
|
721 |
+
CHATGLM_6B_START_DOCSTRING = r"""
|
722 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class.
|
723 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
|
724 |
+
usage and behavior.
|
725 |
+
|
726 |
+
Parameters:
|
727 |
+
config ([`~ChatGLM6BConfig`]): Model configuration class with all the parameters of the model.
|
728 |
+
Initializing with a config file does not load the weights associated with the model, only the configuration.
|
729 |
+
Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
730 |
+
"""
|
731 |
+
|
732 |
+
CHATGLM_6B_INPUTS_DOCSTRING = r"""
|
733 |
+
Args:
|
734 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
735 |
+
Indices of input sequence tokens in the vocabulary.
|
736 |
+
|
737 |
+
Indices can be obtained using [`ChatGLM6BTokenizer`].
|
738 |
+
See [`PreTrainedTokenizer.encode`] and
|
739 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
740 |
+
|
741 |
+
[What are input IDs?](../glossary#input-ids)
|
742 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
743 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
744 |
+
|
745 |
+
- 1 for tokens that are **not masked**,
|
746 |
+
- 0 for tokens that are **masked**.
|
747 |
+
|
748 |
+
[What are attention masks?](../glossary#attention-mask)
|
749 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
750 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0, 1]`:
|
751 |
+
|
752 |
+
- 0 corresponds to a *sentence A* token,
|
753 |
+
- 1 corresponds to a *sentence B* token.
|
754 |
+
|
755 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
756 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
757 |
+
Indices of positions of each input sequence tokens in the position embeddings.
|
758 |
+
Selected in the range `[0, config.max_position_embeddings - 1]`.
|
759 |
+
|
760 |
+
[What are position IDs?](../glossary#position-ids)
|
761 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
762 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
763 |
+
|
764 |
+
- 1 indicates the head is **not masked**,
|
765 |
+
- 0 indicates the head is **masked**.
|
766 |
+
|
767 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):
|
768 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
769 |
+
This is useful if you want more control over how to convert *input_ids* indices into associated vectors
|
770 |
+
than the model's internal embedding lookup matrix.
|
771 |
+
output_attentions (`bool`, *optional*):
|
772 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
773 |
+
tensors for more detail.
|
774 |
+
output_hidden_states (`bool`, *optional*):
|
775 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
776 |
+
more detail.
|
777 |
+
return_dict (`bool`, *optional*):
|
778 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
779 |
+
"""
|
780 |
+
|
781 |
+
|
782 |
+
@add_start_docstrings(
|
783 |
+
"The bare ChatGLM-6B Model transformer outputting raw hidden-states without any specific head on top.",
|
784 |
+
CHATGLM_6B_START_DOCSTRING,
|
785 |
+
)
|
786 |
+
class ChatGLMModel(ChatGLMPreTrainedModel):
|
787 |
+
"""
|
788 |
+
|
789 |
+
The model can behave as an encoder (with only self-attention) as well
|
790 |
+
as a decoder, in which case a layer of cross-attention is added between
|
791 |
+
the self-attention layers, following the architecture described in [Attention is
|
792 |
+
all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani,
|
793 |
+
Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
|
794 |
+
|
795 |
+
To behave as an decoder the model needs to be initialized with the
|
796 |
+
`is_decoder` argument of the configuration set to `True`.
|
797 |
+
To be used in a Seq2Seq model, the model needs to initialized with both `is_decoder`
|
798 |
+
argument and `add_cross_attention` set to `True`; an
|
799 |
+
`encoder_hidden_states` is then expected as an input to the forward pass.
|
800 |
+
"""
|
801 |
+
|
802 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
803 |
+
super().__init__(config)
|
804 |
+
if empty_init:
|
805 |
+
init_method = skip_init
|
806 |
+
else:
|
807 |
+
init_method = default_init
|
808 |
+
# recording parameters
|
809 |
+
self.max_sequence_length = config.max_sequence_length
|
810 |
+
self.hidden_size = config.hidden_size
|
811 |
+
self.params_dtype = torch.half
|
812 |
+
self.num_attention_heads = config.num_attention_heads
|
813 |
+
self.vocab_size = config.vocab_size
|
814 |
+
self.num_layers = config.num_layers
|
815 |
+
self.layernorm_epsilon = config.layernorm_epsilon
|
816 |
+
self.inner_hidden_size = config.inner_hidden_size
|
817 |
+
self.hidden_size_per_attention_head = self.hidden_size // self.num_attention_heads
|
818 |
+
self.position_encoding_2d = config.position_encoding_2d
|
819 |
+
self.pre_seq_len = config.pre_seq_len
|
820 |
+
self.prefix_projection = config.prefix_projection
|
821 |
+
|
822 |
+
self.word_embeddings = init_method(
|
823 |
+
torch.nn.Embedding,
|
824 |
+
num_embeddings=self.vocab_size, embedding_dim=self.hidden_size,
|
825 |
+
dtype=self.params_dtype
|
826 |
+
)
|
827 |
+
self.gradient_checkpointing = False
|
828 |
+
|
829 |
+
def get_layer(layer_id):
|
830 |
+
return GLMBlock(
|
831 |
+
self.hidden_size,
|
832 |
+
self.num_attention_heads,
|
833 |
+
self.layernorm_epsilon,
|
834 |
+
layer_id,
|
835 |
+
inner_hidden_size=self.inner_hidden_size,
|
836 |
+
hidden_size_per_attention_head=self.hidden_size_per_attention_head,
|
837 |
+
layernorm=LayerNorm,
|
838 |
+
use_bias=True,
|
839 |
+
params_dtype=self.params_dtype,
|
840 |
+
position_encoding_2d=self.position_encoding_2d,
|
841 |
+
empty_init=empty_init
|
842 |
+
)
|
843 |
+
|
844 |
+
self.layers = torch.nn.ModuleList(
|
845 |
+
[get_layer(layer_id) for layer_id in range(self.num_layers)]
|
846 |
+
)
|
847 |
+
|
848 |
+
# Final layer norm before output.
|
849 |
+
self.final_layernorm = LayerNorm(self.hidden_size, eps=self.layernorm_epsilon)
|
850 |
+
|
851 |
+
if self.pre_seq_len is not None:
|
852 |
+
for param in self.parameters():
|
853 |
+
param.requires_grad = False
|
854 |
+
self.prefix_tokens = torch.arange(self.pre_seq_len).long()
|
855 |
+
self.prefix_encoder = PrefixEncoder(config)
|
856 |
+
self.dropout = torch.nn.Dropout(0.1)
|
857 |
+
|
858 |
+
# total_params = sum(p.numel() for p in self.parameters())
|
859 |
+
# trainable_params = sum(p.numel() for p in self.parameters() if p.requires_grad)
|
860 |
+
# print("Using p-tuning v2: # trainable_params = {} / {}".format(trainable_params, total_params))
|
861 |
+
|
862 |
+
def get_input_embeddings(self):
|
863 |
+
return self.word_embeddings
|
864 |
+
|
865 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
866 |
+
self.word_embeddings = new_embeddings
|
867 |
+
|
868 |
+
def get_prompt(self, batch_size, device, dtype=torch.half):
|
869 |
+
prefix_tokens = self.prefix_tokens.unsqueeze(0).expand(batch_size, -1).to(device)
|
870 |
+
past_key_values = self.prefix_encoder(prefix_tokens).type(dtype)
|
871 |
+
past_key_values = past_key_values.view(
|
872 |
+
batch_size,
|
873 |
+
self.pre_seq_len,
|
874 |
+
self.num_layers * 2,
|
875 |
+
self.num_attention_heads,
|
876 |
+
self.hidden_size // self.num_attention_heads
|
877 |
+
)
|
878 |
+
# seq_len, b, nh, hidden_size
|
879 |
+
past_key_values = self.dropout(past_key_values)
|
880 |
+
past_key_values = past_key_values.permute([2, 1, 0, 3, 4]).split(2)
|
881 |
+
# past_key_values = [(v[0], v[1]) for v in past_key_values]
|
882 |
+
return past_key_values
|
883 |
+
|
884 |
+
@add_start_docstrings_to_model_forward(CHATGLM_6B_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
885 |
+
@add_code_sample_docstrings(
|
886 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
887 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
888 |
+
config_class=_CONFIG_FOR_DOC,
|
889 |
+
)
|
890 |
+
def forward(
|
891 |
+
self,
|
892 |
+
input_ids: Optional[torch.LongTensor] = None,
|
893 |
+
position_ids: Optional[torch.LongTensor] = None,
|
894 |
+
attention_mask: Optional[torch.Tensor] = None,
|
895 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None,
|
896 |
+
inputs_embeds: Optional[torch.LongTensor] = None,
|
897 |
+
use_cache: Optional[bool] = None,
|
898 |
+
output_attentions: Optional[bool] = None,
|
899 |
+
output_hidden_states: Optional[bool] = None,
|
900 |
+
return_dict: Optional[bool] = None,
|
901 |
+
) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPast]:
|
902 |
+
|
903 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
904 |
+
output_hidden_states = (
|
905 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
906 |
+
)
|
907 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
908 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
909 |
+
|
910 |
+
if self.gradient_checkpointing and self.training:
|
911 |
+
if use_cache:
|
912 |
+
logger.warning_once(
|
913 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
914 |
+
)
|
915 |
+
use_cache = False
|
916 |
+
|
917 |
+
if input_ids is not None and inputs_embeds is not None:
|
918 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
919 |
+
elif input_ids is not None:
|
920 |
+
batch_size, seq_length = input_ids.shape[:2]
|
921 |
+
elif inputs_embeds is not None:
|
922 |
+
batch_size, seq_length = inputs_embeds.shape[:2]
|
923 |
+
else:
|
924 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
925 |
+
|
926 |
+
if inputs_embeds is None:
|
927 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
928 |
+
|
929 |
+
if past_key_values is None:
|
930 |
+
if self.pre_seq_len is not None:
|
931 |
+
past_key_values = self.get_prompt(batch_size=input_ids.shape[0], device=input_ids.device,
|
932 |
+
dtype=inputs_embeds.dtype)
|
933 |
+
else:
|
934 |
+
past_key_values = tuple([None] * len(self.layers))
|
935 |
+
|
936 |
+
if attention_mask is None:
|
937 |
+
attention_mask = self.get_masks(
|
938 |
+
input_ids,
|
939 |
+
device=input_ids.device
|
940 |
+
)
|
941 |
+
|
942 |
+
|
943 |
+
if position_ids is None:
|
944 |
+
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
945 |
+
seqs = input_ids.tolist()
|
946 |
+
|
947 |
+
mask_positions, use_gmasks = [], []
|
948 |
+
for seq in seqs:
|
949 |
+
mask_token = gMASK if gMASK in seq else MASK
|
950 |
+
use_gmask = mask_token == gMASK
|
951 |
+
mask_positions.append(seq.index(mask_token))
|
952 |
+
use_gmasks.append(use_gmask)
|
953 |
+
|
954 |
+
position_ids = self.get_position_ids(
|
955 |
+
input_ids,
|
956 |
+
mask_positions=mask_positions,
|
957 |
+
device=input_ids.device,
|
958 |
+
use_gmasks=use_gmasks
|
959 |
+
)
|
960 |
+
|
961 |
+
if self.pre_seq_len is not None and attention_mask is not None:
|
962 |
+
prefix_attention_mask = torch.ones(batch_size, 1, input_ids.size(-1), self.pre_seq_len).to(
|
963 |
+
attention_mask.device)
|
964 |
+
prefix_attention_mask = (prefix_attention_mask < 0.5).bool()
|
965 |
+
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=3)
|
966 |
+
|
967 |
+
# [seq_len, batch, hidden_size]
|
968 |
+
hidden_states = inputs_embeds.transpose(0, 1)
|
969 |
+
|
970 |
+
presents = () if use_cache else None
|
971 |
+
all_self_attentions = () if output_attentions else None
|
972 |
+
all_hidden_states = () if output_hidden_states else None
|
973 |
+
|
974 |
+
if attention_mask is None:
|
975 |
+
attention_mask = torch.zeros(1, 1, device=input_ids.device).bool()
|
976 |
+
else:
|
977 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
978 |
+
|
979 |
+
for i, layer in enumerate(self.layers):
|
980 |
+
|
981 |
+
if output_hidden_states:
|
982 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
983 |
+
layer_past = past_key_values[i]
|
984 |
+
|
985 |
+
if self.gradient_checkpointing and self.training:
|
986 |
+
layer_ret = torch.utils.checkpoint.checkpoint(
|
987 |
+
layer,
|
988 |
+
hidden_states,
|
989 |
+
position_ids,
|
990 |
+
attention_mask,
|
991 |
+
torch.tensor(i),
|
992 |
+
layer_past,
|
993 |
+
use_cache,
|
994 |
+
output_attentions
|
995 |
+
)
|
996 |
+
else:
|
997 |
+
layer_ret = layer(
|
998 |
+
hidden_states,
|
999 |
+
position_ids=position_ids,
|
1000 |
+
attention_mask=attention_mask,
|
1001 |
+
layer_id=torch.tensor(i),
|
1002 |
+
layer_past=layer_past,
|
1003 |
+
use_cache=use_cache,
|
1004 |
+
output_attentions=output_attentions
|
1005 |
+
)
|
1006 |
+
|
1007 |
+
hidden_states = layer_ret[0]
|
1008 |
+
|
1009 |
+
if use_cache:
|
1010 |
+
presents = presents + (layer_ret[1],)
|
1011 |
+
|
1012 |
+
if output_attentions:
|
1013 |
+
all_self_attentions = all_self_attentions + (layer_ret[2 if use_cache else 1],)
|
1014 |
+
|
1015 |
+
# Final layer norm.
|
1016 |
+
hidden_states = self.final_layernorm(hidden_states)
|
1017 |
+
|
1018 |
+
if output_hidden_states:
|
1019 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1020 |
+
|
1021 |
+
if not return_dict:
|
1022 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
1023 |
+
|
1024 |
+
return BaseModelOutputWithPast(
|
1025 |
+
last_hidden_state=hidden_states,
|
1026 |
+
past_key_values=presents,
|
1027 |
+
hidden_states=all_hidden_states,
|
1028 |
+
attentions=all_self_attentions,
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
class GlobalMaxPool1d(nn.Module):
|
1032 |
+
def __init__(self):
|
1033 |
+
super(GlobalMaxPool1d, self).__init__()
|
1034 |
+
|
1035 |
+
def forward(self, x):#x:[seq_len,batch,hidden_size]
|
1036 |
+
out, _ = torch.max(x, dim=0, keepdim=False)
|
1037 |
+
return out
|
1038 |
+
|
1039 |
+
|
1040 |
+
class ChatGLMForTextClassification(ChatGLMPreTrainedModel):
|
1041 |
+
def __init__(self, config: ChatGLMConfig, num_labels, empty_init=True):
|
1042 |
+
super().__init__(config)
|
1043 |
+
if empty_init:
|
1044 |
+
init_method = skip_init
|
1045 |
+
else:
|
1046 |
+
init_method = default_init
|
1047 |
+
|
1048 |
+
self.max_sequence_length = config.max_sequence_length
|
1049 |
+
|
1050 |
+
self.num_labels = num_labels
|
1051 |
+
|
1052 |
+
self.position_encoding_2d = config.position_encoding_2d
|
1053 |
+
|
1054 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init)
|
1055 |
+
|
1056 |
+
self.lm_head = nn.Sequential(GlobalMaxPool1d(), nn.Linear(config.hidden_size, num_labels, dtype=torch.half))
|
1057 |
+
|
1058 |
+
self.config = config
|
1059 |
+
|
1060 |
+
self.quantized = False
|
1061 |
+
|
1062 |
+
|
1063 |
+
if self.config.quantization_bit:
|
1064 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
1065 |
+
def forward(
|
1066 |
+
self,
|
1067 |
+
input_ids: Optional[torch.Tensor] = None,
|
1068 |
+
position_ids: Optional[torch.Tensor] = None,
|
1069 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1070 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1071 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1072 |
+
labels: Optional[torch.Tensor] = None,
|
1073 |
+
use_cache: Optional[bool] = None,
|
1074 |
+
output_attentions: Optional[bool] = None,
|
1075 |
+
output_hidden_states: Optional[bool] = None,
|
1076 |
+
return_dict: Optional[bool] = None,
|
1077 |
+
):
|
1078 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1079 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1080 |
+
|
1081 |
+
transformer_outputs = self.transformer(
|
1082 |
+
input_ids=input_ids,
|
1083 |
+
position_ids=position_ids,
|
1084 |
+
attention_mask=attention_mask,
|
1085 |
+
past_key_values=past_key_values,
|
1086 |
+
inputs_embeds=inputs_embeds,
|
1087 |
+
use_cache=use_cache,
|
1088 |
+
output_attentions=output_attentions,
|
1089 |
+
output_hidden_states=output_hidden_states,
|
1090 |
+
return_dict=return_dict,
|
1091 |
+
)
|
1092 |
+
|
1093 |
+
hidden_states = transformer_outputs[0]
|
1094 |
+
|
1095 |
+
lm_logits = self.lm_head(hidden_states)
|
1096 |
+
loss = None
|
1097 |
+
if not return_dict:
|
1098 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1099 |
+
return ((loss,) + output) if loss is not None else output
|
1100 |
+
|
1101 |
+
return SequenceClassifierOutput(
|
1102 |
+
loss=loss,
|
1103 |
+
logits=lm_logits,
|
1104 |
+
hidden_states=transformer_outputs.hidden_states,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
|
1108 |
+
class ChatGLMForConditionalGeneration(ChatGLMPreTrainedModel):
|
1109 |
+
def __init__(self, config: ChatGLMConfig, empty_init=True):
|
1110 |
+
super().__init__(config)
|
1111 |
+
if empty_init:
|
1112 |
+
init_method = skip_init
|
1113 |
+
else:
|
1114 |
+
init_method = default_init
|
1115 |
+
|
1116 |
+
# self.hidden_size = config.hidden_size
|
1117 |
+
# self.params_dtype = torch.half
|
1118 |
+
# self.vocab_size = config.vocab_size
|
1119 |
+
self.max_sequence_length = config.max_sequence_length
|
1120 |
+
|
1121 |
+
self.position_encoding_2d = config.position_encoding_2d
|
1122 |
+
|
1123 |
+
self.transformer = ChatGLMModel(config, empty_init=empty_init)
|
1124 |
+
|
1125 |
+
self.lm_head = init_method(
|
1126 |
+
nn.Linear,
|
1127 |
+
config.hidden_size,
|
1128 |
+
config.vocab_size,
|
1129 |
+
bias=False,
|
1130 |
+
dtype=torch.half
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
self.config = config
|
1134 |
+
|
1135 |
+
self.quantized = False
|
1136 |
+
|
1137 |
+
if self.config.quantization_bit:
|
1138 |
+
self.quantize(self.config.quantization_bit, empty_init=True)
|
1139 |
+
|
1140 |
+
def get_output_embeddings(self):
|
1141 |
+
return self.lm_head
|
1142 |
+
|
1143 |
+
def set_output_embeddings(self, new_embeddings):
|
1144 |
+
self.lm_head = new_embeddings
|
1145 |
+
|
1146 |
+
def _update_model_kwargs_for_generation(
|
1147 |
+
self,
|
1148 |
+
outputs: ModelOutput,
|
1149 |
+
model_kwargs: Dict[str, Any],
|
1150 |
+
is_encoder_decoder: bool = False,
|
1151 |
+
standardize_cache_format: bool = False,
|
1152 |
+
) -> Dict[str, Any]:
|
1153 |
+
# update past_key_values
|
1154 |
+
model_kwargs["past_key_values"] = self._extract_past_from_model_output(
|
1155 |
+
outputs, standardize_cache_format=standardize_cache_format
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
# update attention mask
|
1159 |
+
if "attention_mask" in model_kwargs:
|
1160 |
+
attention_mask = model_kwargs["attention_mask"]
|
1161 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1162 |
+
attention_mask = torch.cat(
|
1163 |
+
[attention_mask, attention_mask.new_ones((*attention_mask.shape[:3], 1))], dim=3)
|
1164 |
+
new_attention_mask = attention_mask[:, :, -1:].clone()
|
1165 |
+
new_attention_mask[..., -1] = False
|
1166 |
+
model_kwargs["attention_mask"] = torch.cat(
|
1167 |
+
[attention_mask, new_attention_mask], dim=2
|
1168 |
+
)
|
1169 |
+
|
1170 |
+
# update position ids
|
1171 |
+
if "position_ids" in model_kwargs:
|
1172 |
+
position_ids = model_kwargs["position_ids"]
|
1173 |
+
new_position_id = position_ids[..., -1:].clone()
|
1174 |
+
new_position_id[:, 1, :] += 1
|
1175 |
+
model_kwargs["position_ids"] = torch.cat(
|
1176 |
+
[position_ids, new_position_id], dim=-1
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
return model_kwargs
|
1180 |
+
|
1181 |
+
def prepare_inputs_for_generation(
|
1182 |
+
self,
|
1183 |
+
input_ids: torch.LongTensor,
|
1184 |
+
past: Optional[torch.Tensor] = None,
|
1185 |
+
past_key_values: Optional[torch.Tensor] = None,
|
1186 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1187 |
+
position_ids: Optional[torch.Tensor] = None,
|
1188 |
+
**kwargs
|
1189 |
+
) -> dict:
|
1190 |
+
batch_size, seq_length = input_ids.shape
|
1191 |
+
MASK, gMASK = self.config.mask_token_id, self.config.gmask_token_id
|
1192 |
+
seqs = input_ids.tolist()
|
1193 |
+
mask_positions, use_gmasks = [], []
|
1194 |
+
for seq in seqs:
|
1195 |
+
mask_token = gMASK if gMASK in seq else MASK
|
1196 |
+
use_gmask = mask_token == gMASK
|
1197 |
+
mask_positions.append(seq.index(mask_token))
|
1198 |
+
use_gmasks.append(use_gmask)
|
1199 |
+
|
1200 |
+
# only last token for input_ids if past is not None
|
1201 |
+
if past is not None or past_key_values is not None:
|
1202 |
+
last_token = input_ids[:, -1].unsqueeze(-1)
|
1203 |
+
if attention_mask is not None and attention_mask.dtype == torch.bool:
|
1204 |
+
attention_mask = attention_mask[:, :, -1:]
|
1205 |
+
else:
|
1206 |
+
attention_mask = None
|
1207 |
+
if position_ids is not None:
|
1208 |
+
position_ids = position_ids[..., -1:]
|
1209 |
+
else:
|
1210 |
+
context_lengths = [seq.index(self.config.bos_token_id) for seq in seqs]
|
1211 |
+
if self.position_encoding_2d:
|
1212 |
+
position_ids = torch.tensor(
|
1213 |
+
[[mask_position, seq_length - context_length] for mask_position, context_length in
|
1214 |
+
zip(mask_positions, context_lengths)], dtype=torch.long, device=input_ids.device).unsqueeze(-1)
|
1215 |
+
else:
|
1216 |
+
position_ids = torch.tensor([mask_position for mask_position in mask_positions], dtype=torch.long,
|
1217 |
+
device=input_ids.device).unsqueeze(-1)
|
1218 |
+
|
1219 |
+
if past is None:
|
1220 |
+
past = past_key_values
|
1221 |
+
return {
|
1222 |
+
"input_ids": last_token,
|
1223 |
+
"past_key_values": past,
|
1224 |
+
"position_ids": position_ids,
|
1225 |
+
"attention_mask": attention_mask
|
1226 |
+
}
|
1227 |
+
else:
|
1228 |
+
if attention_mask is not None and attention_mask.dtype != torch.bool:
|
1229 |
+
logger.warning_once(f"The dtype of attention mask ({attention_mask.dtype}) is not bool")
|
1230 |
+
attention_mask = None
|
1231 |
+
if attention_mask is None:
|
1232 |
+
attention_mask = self.get_masks(
|
1233 |
+
input_ids,
|
1234 |
+
device=input_ids.device
|
1235 |
+
)
|
1236 |
+
if position_ids is None:
|
1237 |
+
position_ids = self.get_position_ids(
|
1238 |
+
input_ids,
|
1239 |
+
device=input_ids.device,
|
1240 |
+
mask_positions=mask_positions,
|
1241 |
+
use_gmasks=use_gmasks
|
1242 |
+
)
|
1243 |
+
|
1244 |
+
return {
|
1245 |
+
"input_ids": input_ids,
|
1246 |
+
"past_key_values": past,
|
1247 |
+
"position_ids": position_ids,
|
1248 |
+
"attention_mask": attention_mask
|
1249 |
+
}
|
1250 |
+
|
1251 |
+
def forward(
|
1252 |
+
self,
|
1253 |
+
input_ids: Optional[torch.Tensor] = None,
|
1254 |
+
position_ids: Optional[torch.Tensor] = None,
|
1255 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1256 |
+
past_key_values: Optional[Tuple[torch.FloatTensor]] = None,
|
1257 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1258 |
+
labels: Optional[torch.Tensor] = None,
|
1259 |
+
use_cache: Optional[bool] = None,
|
1260 |
+
output_attentions: Optional[bool] = None,
|
1261 |
+
output_hidden_states: Optional[bool] = None,
|
1262 |
+
return_dict: Optional[bool] = None,
|
1263 |
+
):
|
1264 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1265 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1266 |
+
|
1267 |
+
transformer_outputs = self.transformer(
|
1268 |
+
input_ids=input_ids,
|
1269 |
+
position_ids=position_ids,
|
1270 |
+
attention_mask=attention_mask,
|
1271 |
+
past_key_values=past_key_values,
|
1272 |
+
inputs_embeds=inputs_embeds,
|
1273 |
+
use_cache=use_cache,
|
1274 |
+
output_attentions=output_attentions,
|
1275 |
+
output_hidden_states=output_hidden_states,
|
1276 |
+
return_dict=return_dict,
|
1277 |
+
)
|
1278 |
+
|
1279 |
+
hidden_states = transformer_outputs[0]
|
1280 |
+
|
1281 |
+
lm_logits = self.lm_head(hidden_states).permute(1, 0, 2).contiguous()
|
1282 |
+
|
1283 |
+
loss = None
|
1284 |
+
if labels is not None:
|
1285 |
+
lm_logits = lm_logits.to(torch.float32)
|
1286 |
+
|
1287 |
+
# Shift so that tokens < n predict n
|
1288 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1289 |
+
shift_labels = labels[..., 1:].contiguous()
|
1290 |
+
# Flatten the tokens
|
1291 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1292 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1293 |
+
|
1294 |
+
lm_logits = lm_logits.to(hidden_states.dtype)
|
1295 |
+
loss = loss.to(hidden_states.dtype)
|
1296 |
+
|
1297 |
+
if not return_dict:
|
1298 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1299 |
+
return ((loss,) + output) if loss is not None else output
|
1300 |
+
|
1301 |
+
return CausalLMOutputWithPast(
|
1302 |
+
loss=loss,
|
1303 |
+
logits=lm_logits,
|
1304 |
+
past_key_values=transformer_outputs.past_key_values,
|
1305 |
+
hidden_states=transformer_outputs.hidden_states,
|
1306 |
+
attentions=transformer_outputs.attentions,
|
1307 |
+
)
|
1308 |
+
|
1309 |
+
@staticmethod
|
1310 |
+
def _reorder_cache(
|
1311 |
+
past: Tuple[Tuple[torch.Tensor, torch.Tensor], ...], beam_idx: torch.LongTensor
|
1312 |
+
) -> Tuple[Tuple[torch.Tensor, torch.Tensor], ...]:
|
1313 |
+
"""
|
1314 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1315 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1316 |
+
beam_idx at every generation step.
|
1317 |
+
|
1318 |
+
Output shares the same memory storage as `past`.
|
1319 |
+
"""
|
1320 |
+
return tuple(
|
1321 |
+
(
|
1322 |
+
layer_past[0].index_select(1, beam_idx.to(layer_past[0].device)),
|
1323 |
+
layer_past[1].index_select(1, beam_idx.to(layer_past[1].device)),
|
1324 |
+
)
|
1325 |
+
for layer_past in past
|
1326 |
+
)
|
1327 |
+
|
1328 |
+
def process_response(self, response):
|
1329 |
+
response = response.strip()
|
1330 |
+
response = response.replace("[[训练时间]]", "2023年")
|
1331 |
+
punkts = [
|
1332 |
+
[",", ","],
|
1333 |
+
["!", "!"],
|
1334 |
+
[":", ":"],
|
1335 |
+
[";", ";"],
|
1336 |
+
["\?", "?"],
|
1337 |
+
]
|
1338 |
+
for item in punkts:
|
1339 |
+
response = re.sub(r"([\u4e00-\u9fff])%s" % item[0], r"\1%s" % item[1], response)
|
1340 |
+
response = re.sub(r"%s([\u4e00-\u9fff])" % item[0], r"%s\1" % item[1], response)
|
1341 |
+
return response
|
1342 |
+
|
1343 |
+
@torch.no_grad()
|
1344 |
+
def chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048, num_beams=1,
|
1345 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1346 |
+
if history is None:
|
1347 |
+
history = []
|
1348 |
+
if logits_processor is None:
|
1349 |
+
logits_processor = LogitsProcessorList()
|
1350 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1351 |
+
gen_kwargs = {"max_length": max_length, "num_beams": num_beams, "do_sample": do_sample, "top_p": top_p,
|
1352 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1353 |
+
if not history:
|
1354 |
+
prompt = query
|
1355 |
+
else:
|
1356 |
+
prompt = ""
|
1357 |
+
for i, (old_query, response) in enumerate(history):
|
1358 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1359 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1360 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1361 |
+
inputs = inputs.to(self.device)
|
1362 |
+
outputs = self.generate(**inputs, **gen_kwargs)
|
1363 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1364 |
+
response = tokenizer.decode(outputs)
|
1365 |
+
response = self.process_response(response)
|
1366 |
+
history = history + [(query, response)]
|
1367 |
+
return response, history
|
1368 |
+
|
1369 |
+
@torch.no_grad()
|
1370 |
+
def stream_chat(self, tokenizer, query: str, history: List[Tuple[str, str]] = None, max_length: int = 2048,
|
1371 |
+
do_sample=True, top_p=0.7, temperature=0.95, logits_processor=None, **kwargs):
|
1372 |
+
if history is None:
|
1373 |
+
history = []
|
1374 |
+
if logits_processor is None:
|
1375 |
+
logits_processor = LogitsProcessorList()
|
1376 |
+
logits_processor.append(InvalidScoreLogitsProcessor())
|
1377 |
+
gen_kwargs = {"max_length": max_length, "do_sample": do_sample, "top_p": top_p,
|
1378 |
+
"temperature": temperature, "logits_processor": logits_processor, **kwargs}
|
1379 |
+
if not history:
|
1380 |
+
prompt = query
|
1381 |
+
else:
|
1382 |
+
prompt = ""
|
1383 |
+
for i, (old_query, response) in enumerate(history):
|
1384 |
+
prompt += "[Round {}]\n问:{}\n答:{}\n".format(i, old_query, response)
|
1385 |
+
prompt += "[Round {}]\n问:{}\n答:".format(len(history), query)
|
1386 |
+
inputs = tokenizer([prompt], return_tensors="pt")
|
1387 |
+
inputs = inputs.to(self.device)
|
1388 |
+
for outputs in self.stream_generate(**inputs, **gen_kwargs):
|
1389 |
+
outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
|
1390 |
+
response = tokenizer.decode(outputs)
|
1391 |
+
response = self.process_response(response)
|
1392 |
+
new_history = history + [(query, response)]
|
1393 |
+
yield response, new_history
|
1394 |
+
|
1395 |
+
@torch.no_grad()
|
1396 |
+
def stream_generate(
|
1397 |
+
self,
|
1398 |
+
input_ids,
|
1399 |
+
generation_config: Optional[GenerationConfig] = None,
|
1400 |
+
logits_processor: Optional[LogitsProcessorList] = None,
|
1401 |
+
stopping_criteria: Optional[StoppingCriteriaList] = None,
|
1402 |
+
prefix_allowed_tokens_fn: Optional[Callable[[int, torch.Tensor], List[int]]] = None,
|
1403 |
+
**kwargs,
|
1404 |
+
):
|
1405 |
+
batch_size, input_ids_seq_length = input_ids.shape[0], input_ids.shape[-1]
|
1406 |
+
|
1407 |
+
if generation_config is None:
|
1408 |
+
generation_config = self.generation_config
|
1409 |
+
generation_config = copy.deepcopy(generation_config)
|
1410 |
+
model_kwargs = generation_config.update(**kwargs)
|
1411 |
+
bos_token_id, eos_token_id = generation_config.bos_token_id, generation_config.eos_token_id
|
1412 |
+
|
1413 |
+
if isinstance(eos_token_id, int):
|
1414 |
+
eos_token_id = [eos_token_id]
|
1415 |
+
|
1416 |
+
has_default_max_length = kwargs.get("max_length") is None and generation_config.max_length is not None
|
1417 |
+
if has_default_max_length and generation_config.max_new_tokens is None:
|
1418 |
+
warnings.warn(
|
1419 |
+
f"Using `max_length`'s default ({generation_config.max_length}) to control the generation length. "
|
1420 |
+
"This behaviour is deprecated and will be removed from the config in v5 of Transformers -- we"
|
1421 |
+
" recommend using `max_new_tokens` to control the maximum length of the generation.",
|
1422 |
+
UserWarning,
|
1423 |
+
)
|
1424 |
+
elif generation_config.max_new_tokens is not None:
|
1425 |
+
generation_config.max_length = generation_config.max_new_tokens + input_ids_seq_length
|
1426 |
+
if not has_default_max_length:
|
1427 |
+
logger.warn(
|
1428 |
+
f"Both `max_new_tokens` (={generation_config.max_new_tokens}) and `max_length`(="
|
1429 |
+
f"{generation_config.max_length}) seem to have been set. `max_new_tokens` will take precedence. "
|
1430 |
+
"Please refer to the documentation for more information. "
|
1431 |
+
"(https://huggingface.co/docs/transformers/main/en/main_classes/text_generation)",
|
1432 |
+
UserWarning,
|
1433 |
+
)
|
1434 |
+
|
1435 |
+
if input_ids_seq_length >= generation_config.max_length:
|
1436 |
+
input_ids_string = "decoder_input_ids" if self.config.is_encoder_decoder else "input_ids"
|
1437 |
+
logger.warning(
|
1438 |
+
f"Input length of {input_ids_string} is {input_ids_seq_length}, but `max_length` is set to"
|
1439 |
+
f" {generation_config.max_length}. This can lead to unexpected behavior. You should consider"
|
1440 |
+
" increasing `max_new_tokens`."
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
# 2. Set generation parameters if not already defined
|
1444 |
+
logits_processor = logits_processor if logits_processor is not None else LogitsProcessorList()
|
1445 |
+
stopping_criteria = stopping_criteria if stopping_criteria is not None else StoppingCriteriaList()
|
1446 |
+
|
1447 |
+
logits_processor = self._get_logits_processor(
|
1448 |
+
generation_config=generation_config,
|
1449 |
+
input_ids_seq_length=input_ids_seq_length,
|
1450 |
+
encoder_input_ids=input_ids,
|
1451 |
+
prefix_allowed_tokens_fn=prefix_allowed_tokens_fn,
|
1452 |
+
logits_processor=logits_processor,
|
1453 |
+
)
|
1454 |
+
|
1455 |
+
stopping_criteria = self._get_stopping_criteria(
|
1456 |
+
generation_config=generation_config, stopping_criteria=stopping_criteria
|
1457 |
+
)
|
1458 |
+
logits_warper = self._get_logits_warper(generation_config)
|
1459 |
+
|
1460 |
+
unfinished_sequences = input_ids.new(input_ids.shape[0]).fill_(1)
|
1461 |
+
scores = None
|
1462 |
+
while True:
|
1463 |
+
model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs)
|
1464 |
+
# forward pass to get next token
|
1465 |
+
outputs = self(
|
1466 |
+
**model_inputs,
|
1467 |
+
return_dict=True,
|
1468 |
+
output_attentions=False,
|
1469 |
+
output_hidden_states=False,
|
1470 |
+
)
|
1471 |
+
|
1472 |
+
next_token_logits = outputs.logits[:, -1, :]
|
1473 |
+
|
1474 |
+
# pre-process distribution
|
1475 |
+
next_token_scores = logits_processor(input_ids, next_token_logits)
|
1476 |
+
next_token_scores = logits_warper(input_ids, next_token_scores)
|
1477 |
+
|
1478 |
+
# sample
|
1479 |
+
probs = nn.functional.softmax(next_token_scores, dim=-1)
|
1480 |
+
if generation_config.do_sample:
|
1481 |
+
next_tokens = torch.multinomial(probs, num_samples=1).squeeze(1)
|
1482 |
+
else:
|
1483 |
+
next_tokens = torch.argmax(probs, dim=-1)
|
1484 |
+
|
1485 |
+
# update generated ids, model inputs, and length for next step
|
1486 |
+
input_ids = torch.cat([input_ids, next_tokens[:, None]], dim=-1)
|
1487 |
+
model_kwargs = self._update_model_kwargs_for_generation(
|
1488 |
+
outputs, model_kwargs, is_encoder_decoder=self.config.is_encoder_decoder
|
1489 |
+
)
|
1490 |
+
unfinished_sequences = unfinished_sequences.mul((sum(next_tokens != i for i in eos_token_id)).long())
|
1491 |
+
|
1492 |
+
# stop when each sentence is finished, or if we exceed the maximum length
|
1493 |
+
if unfinished_sequences.max() == 0 or stopping_criteria(input_ids, scores):
|
1494 |
+
break
|
1495 |
+
yield input_ids
|
1496 |
+
|
1497 |
+
def quantize(self, bits: int, empty_init=False, **kwargs):
|
1498 |
+
if bits == 0:
|
1499 |
+
return
|
1500 |
+
|
1501 |
+
from .quantization import quantize
|
1502 |
+
|
1503 |
+
if self.quantized:
|
1504 |
+
logger.info("Already quantized.")
|
1505 |
+
return self
|
1506 |
+
|
1507 |
+
self.quantized = True
|
1508 |
+
|
1509 |
+
self.config.quantization_bit = bits
|
1510 |
+
|
1511 |
+
self.transformer = quantize(self.transformer, bits, empty_init=empty_init, **kwargs)
|
1512 |
+
return self
|
test_modeling_chatglm.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import datetime
|
2 |
+
import math
|
3 |
+
import unittest
|
4 |
+
import torch
|
5 |
+
import random
|
6 |
+
|
7 |
+
from transformers import AutoTokenizer, AutoModel
|
8 |
+
from transformers.testing_utils import require_torch, slow, torch_device
|
9 |
+
|
10 |
+
|
11 |
+
def set_random_seed(seed):
|
12 |
+
import random
|
13 |
+
|
14 |
+
random.seed(seed)
|
15 |
+
|
16 |
+
# pytorch RNGs
|
17 |
+
import torch
|
18 |
+
|
19 |
+
torch.manual_seed(seed)
|
20 |
+
torch.backends.cudnn.deterministic = True
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
torch.cuda.manual_seed_all(seed)
|
23 |
+
|
24 |
+
# numpy RNG
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
np.random.seed(seed)
|
28 |
+
|
29 |
+
|
30 |
+
|
31 |
+
def ids_tensor(shape, vocab_size):
|
32 |
+
# Creates a random int32 tensor of the shape within the vocab size
|
33 |
+
total_dims = 1
|
34 |
+
for dim in shape:
|
35 |
+
total_dims *= dim
|
36 |
+
|
37 |
+
values = []
|
38 |
+
for _ in range(total_dims):
|
39 |
+
values.append(random.randint(0, vocab_size - 1))
|
40 |
+
|
41 |
+
return torch.tensor(data=values, dtype=torch.long, device=torch_device).view(shape).contiguous()
|
42 |
+
|
43 |
+
|
44 |
+
def get_model_and_tokenizer():
|
45 |
+
model = AutoModel.from_pretrained("/mnt/vepfs/workspace/zxdu/chatglm_6b", trust_remote_code=True).half()
|
46 |
+
model.to(torch_device)
|
47 |
+
model.eval()
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained("/mnt/vepfs/workspace/zxdu/chatglm_6b", trust_remote_code=True)
|
49 |
+
return model, tokenizer
|
50 |
+
|
51 |
+
|
52 |
+
@require_torch
|
53 |
+
class ChatGLMGenerationTest(unittest.TestCase):
|
54 |
+
def get_generation_kwargs(self):
|
55 |
+
pass
|
56 |
+
|
57 |
+
def test_chat(self):
|
58 |
+
model, tokenizer = get_model_and_tokenizer()
|
59 |
+
prompts = ["你好", "介绍一下清华大学", "它创建于哪一年"]
|
60 |
+
history = []
|
61 |
+
set_random_seed(42)
|
62 |
+
expected_responses = [
|
63 |
+
'你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
64 |
+
'清华大学是中国著名的综合性研究型大学,位于中国北京市海淀区,创建于 1911 年,前身是清华学堂。作为我国顶尖高等教育机构之一,清华大学在科学研究、工程技术、信息技术、经济管理等领域处于领先地位,也是世界上最著名的工程学府之一。\n\n清华大学拥有世界一流的教学设施和科学研究平台,设有多个学院和研究中心,包括工程学院、自然科学学院、社会科学学院、人文学院、法学院、经济管理学院等。学校拥有众多知名教授和研究团队,其中包括多位院士、国家杰出青年科学基金获得者、长江学者等。\n\n清华大学的本科生招生范围为全国中学毕业生,本科生入学要求严格,考试成绩优秀。同时,清华大学也提供研究生和博士生招生,包括硕士研究生和博士研究生。',
|
65 |
+
'清华大学创建于 1911 年。'
|
66 |
+
]
|
67 |
+
for (prompt, expected_response) in zip(prompts, expected_responses):
|
68 |
+
response, history = model.chat(tokenizer, prompt, history=history)
|
69 |
+
print(repr(response))
|
70 |
+
self.assertEquals(expected_response, response)
|
71 |
+
|
72 |
+
def test_stream_chat(self):
|
73 |
+
model, tokenizer = get_model_and_tokenizer()
|
74 |
+
prompts = ["你好", "介绍一下清华大学", "它创建于哪一年"]
|
75 |
+
history = []
|
76 |
+
expected_responses = [
|
77 |
+
'你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
78 |
+
'清华大学是中国著名的综合性研究型大学,位于中国北京市海淀区,创建于 1911 年,前身是清华学堂。作为我国顶尖高等教育机构之一,清华大学在科学研究、工程技术、信息技术、经济管理等领域处于领先地位,也是世界上最著名的工程学府之一。\n\n清华大学拥有世界一流的教学设施和科学研究平台,设有多个学院和研究中心,包括工程学院、自然科学学院、社会科学学院、人文学院、法学院、经济管理学院等。学校拥有众多知名教授和研究团队,其中包括多位院士、国家杰出青年科学基金获得者、长江学者等。\n\n清华大学的本科生招生范围为全国中学毕业生,本科生入学要求严格,考试成绩优秀。同时,清华大学也提供研究生和博士生招生,包括硕士研究生和博士研究生。',
|
79 |
+
'清华大学创建于 1911 年。'
|
80 |
+
]
|
81 |
+
set_random_seed(42)
|
82 |
+
for prompt, expected_response in zip(prompts, expected_responses):
|
83 |
+
response = ""
|
84 |
+
for idx, (response, history) in enumerate(model.stream_chat(tokenizer, prompt, history=history)):
|
85 |
+
pass
|
86 |
+
print(repr(response))
|
87 |
+
self.assertEquals(expected_response, response)
|
88 |
+
|
89 |
+
def test_generation(self):
|
90 |
+
model, tokenizer = get_model_and_tokenizer()
|
91 |
+
sentence = "晚上睡不着怎么办"
|
92 |
+
parameters = [(False, 2048, 1),
|
93 |
+
(False, 64, 1),
|
94 |
+
(True, 2048, 1),
|
95 |
+
(True, 64, 1),
|
96 |
+
(True, 2048, 4)]
|
97 |
+
expected_out_sentences = [
|
98 |
+
'晚上睡不着怎么办 以下��一些可能有助于在晚上入睡的方法:\n\n1. 保持规律的睡眠时间表:尽量在同一时间上床,并尝试在早上醒来时自然起床。\n\n2. 创建舒适的睡眠环境:保持房间安静、凉爽、黑暗、舒适,并使用舒适的床垫和枕头。\n\n3. 避免刺激性物质:避免饮用含咖啡因的饮料,如咖啡、茶和可乐,并尽可能减少饮酒。\n\n4. 放松身心:尝试进行放松的活动,如冥想、深呼吸、瑜伽或听轻柔的音乐。\n\n5. 避免在床上做其他事情:例如看电视、使用电脑或智能手机等。\n\n6. 练习放松技巧:例如渐进性肌肉松弛法、冥想或深呼吸练习。\n\n7. 寻求帮助:如果长时间都无法正常入睡,可以考虑咨询医生或专业心理医生,寻求更进一步的帮助。\n\n希望这些方法能有助于入睡。',
|
99 |
+
'晚上睡不着怎么办 以下是一些可能有助于在晚上入睡的方法:\n\n1. 保持规律的睡眠时间表:尽量在同一时间上床,并尝试在早上醒来时自然起床。\n\n2. 创建舒适的睡眠环境:保持房间安静、凉爽、黑暗、舒适,并使用舒适的床垫和枕头。',
|
100 |
+
'晚上睡不着怎么办 以下是一些有助于在晚上更好地入睡的方法:\n\n1. 维持规律的睡眠时间:每晚尽可能在同一时间上床,保持规律的睡眠时间表,帮助身体调整并更容易入睡。\n\n2. 避免在床上使用电子设备:手机、平板电脑、电脑等电子设备会发出蓝光,这会干扰身体释放褪黑素,进而导致难以入睡。建议你在睡前一小时停止使用这些设备。\n\n3. 创建舒适的睡眠环境:确保卧室安静、黑暗、凉爽,舒适的床垫和枕头,保持卧室温度适宜,这有助于让你更容易入睡。\n\n4. 放松身心:尝试进行一些放松的活动,如冥想、深呼吸、瑜伽或轻松的散步,减轻压力和焦虑,让你更容易入睡。\n\n5. 避免咖啡因和酒精:咖啡因和酒精会让大脑更加兴奋,进而干扰身体入睡过程。建议在睡前几小时避免饮用这些物质。\n\n6. 做一些安静的活动:阅读一本书、听轻柔的音乐、绣或者绘画等安静的活动,有助于自己放松身心,进而更容易入睡。\n\n如果采取以上这些方法仍然无法入睡,建议咨询医生或专业的睡眠专家,获取更好的建议和帮助。',
|
101 |
+
'晚上睡不着怎么办 以下是一些有助于在晚上更好地入睡的方法:\n\n1. 维持规律的睡眠时间:每晚尽可能在同一时间上床,保持规律的睡眠时间表,帮助身体调整并更容易入睡。\n\n2. 避免在床上使用电子设备:手机、平板电脑、电脑等电子设备会发出蓝光,这会干扰身体',
|
102 |
+
'晚上睡不着怎么办 以下是一些可能有助于在晚上入睡的方法:\n\n1. 建立规律的睡眠时间表:尽量在同一时间入睡和起床,即使在周末和假期也要尽量保持一致。\n\n2. 创造舒适的睡眠环境:保持房间安静、凉爽、黑暗、舒适,使用舒适的床垫和枕头等。\n\n3. 放松身心:尝试进行一些放松的活动,如冥想、深呼吸、瑜伽、听轻柔的音乐等,缓解压力和紧张情绪。\n\n4. 避免刺激性物质:避免饮用咖啡、茶、可乐等含咖啡因的饮料,避免吸烟和饮酒等刺激性物质。\n\n5. 避免躺在床上翻来覆去:如果躺在床上超过20分钟还不能入睡,就不要躺在床上翻来覆去,而是起床去做一些放松的活动,直到感到困倦为止。\n\n6. 练习放松技巧:如果感到焦虑或紧张,可以尝试进行一些放松技巧,如渐进性肌肉松弛、冥想等。\n\n7. 改善睡眠障碍:如果已经尝试了上述方法仍然无法入睡,可以考虑咨询医生,了解是否存在其他睡眠障碍问题,并接受相应的治疗。']
|
103 |
+
for (do_sample, max_length, num_beams), expected_output_sentence in zip(parameters, expected_out_sentences):
|
104 |
+
set_random_seed(42)
|
105 |
+
inputs = tokenizer(sentence, return_tensors="pt")
|
106 |
+
inputs = inputs.to(torch_device)
|
107 |
+
|
108 |
+
outputs = model.generate(
|
109 |
+
**inputs,
|
110 |
+
do_sample=do_sample,
|
111 |
+
max_length=max_length,
|
112 |
+
num_beams=num_beams
|
113 |
+
)
|
114 |
+
|
115 |
+
outputs = outputs.tolist()[0]
|
116 |
+
out_sentence = tokenizer.decode(outputs, skip_special_tokens=True)
|
117 |
+
print(out_sentence)
|
118 |
+
self.assertEquals(expected_output_sentence, out_sentence)
|
119 |
+
|
120 |
+
def test_batch_generation(self):
|
121 |
+
model, tokenizer = get_model_and_tokenizer()
|
122 |
+
sentences = [
|
123 |
+
"你好",
|
124 |
+
"介绍一下清华大学"
|
125 |
+
]
|
126 |
+
parameters = [(False, 2048, 1),
|
127 |
+
(False, 64, 1),
|
128 |
+
(True, 2048, 1),
|
129 |
+
(True, 64, 1),
|
130 |
+
(True, 2048, 4)]
|
131 |
+
expected_out_sentences = [
|
132 |
+
['你好 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
133 |
+
'介绍一下清华大学 清华大学��中国著名的综合性大学,位于北京市海淀区双清路30号,其历史可以追溯到1911年创建的清华学堂,1925年更名为清华学校,1937年抗日战争全面爆发后南迁长沙,1946年迁回清华园。新中国成立后,清华学校更名为清华大学。\n\n清华大学是中国最顶尖的大学之一,在工程、科学、技术、经济、管理等领域都有很高的学术声誉和影响力。学校拥有世界一流的教学设施和科学研究平台,有多个学院和研究中心,包括工程学院、自然科学学院、人文学院、社会科学学院、经济管理学院、法学院、美术学院、医学院、器学院等。\n\n清华大学的本科生招生始于2000年,实行全面二孩政策后,本科生招生规模不断扩大。截至2022年,清华大学共有本科生近3万人,研究生近2万人,其中国际学生占比约为10%。清华大学的本科生教育注重通识教育和个性化培养,强调实践、创新、国际化和综合素质。'],
|
134 |
+
[
|
135 |
+
'你好 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
136 |
+
'介绍一下清华大学 清华大学是中国著名的综合性大学,位于北京市海淀区双清路30号,其历史可以追溯到1911年创建的清华学堂,1925年更名为清华学校,1937年抗日战争全面爆发后南迁长沙,1946年迁回'
|
137 |
+
],
|
138 |
+
[
|
139 |
+
'你好 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
140 |
+
'介绍一下清华大学 清华大学是中国著名的综合性研究型大学,位于北京市海淀区双清路 30 号,其溯源于 1911 年创建的清华学堂, 1925 年更名为清华学校, 1937 年秋抗日战争全面爆发后闭校。1949 年 10 月开学复校,成为我国第一个社会主义大学生活了的高校。截至 2023 年,清华学校共管辖 2 个学院、13 个系,有本科专业 60 个,研究生专业 190 个。'
|
141 |
+
],
|
142 |
+
[
|
143 |
+
'你好 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
144 |
+
'介绍一下清华大学 清华大学是中国著名的综合性研究型大学,位于北京市海淀区双清路 30 号,其溯源于 1911 年创建的清华学堂, 1925 年更名为清华学校, 1937 年秋抗日战争全面爆发后'
|
145 |
+
],
|
146 |
+
[
|
147 |
+
'你好 你好👋!我是人工智能助手 ChatGLM-6B,很高兴见到你,欢迎问我任何问题。',
|
148 |
+
'介绍一下清华大学 清华大学是中国著名的综合性研究型大学,位于北京市海淀区双清路30号,其历史可以追溯到1911年创建的清华学堂,1925年更名为清华学校,1937年抗日战争全面爆发后南迁长沙,与北京大学、南开大学组建国立长沙临时大学,1938年迁至 昆明改名为国立西南联合大学,1946年迁回北京。新中国成立后,清华学校更名为清华大学。'
|
149 |
+
]
|
150 |
+
]
|
151 |
+
for (do_sample, max_length, num_beams), expected_output_sentence in zip(parameters, expected_out_sentences):
|
152 |
+
set_random_seed(42)
|
153 |
+
inputs = tokenizer(sentences, return_tensors="pt", padding=True)
|
154 |
+
inputs = inputs.to(torch_device)
|
155 |
+
|
156 |
+
outputs = model.generate(
|
157 |
+
**inputs,
|
158 |
+
do_sample=do_sample,
|
159 |
+
max_length=max_length,
|
160 |
+
num_beams=num_beams
|
161 |
+
)
|
162 |
+
|
163 |
+
batch_out_sentence = tokenizer.batch_decode(outputs, skip_special_tokens=True)
|
164 |
+
print(batch_out_sentence)
|
165 |
+
self.assertListEqual(expected_output_sentence, batch_out_sentence)
|
tokenization_chatglm.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tokenization classes for ChatGLM."""
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
import os
|
4 |
+
|
5 |
+
from transformers.tokenization_utils import PreTrainedTokenizer
|
6 |
+
from transformers.utils import logging, PaddingStrategy
|
7 |
+
from transformers.tokenization_utils_base import EncodedInput, BatchEncoding
|
8 |
+
from typing import Dict
|
9 |
+
import sentencepiece as spm
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
logger = logging.get_logger(__name__)
|
13 |
+
|
14 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
15 |
+
"THUDM/chatglm-6b": 2048,
|
16 |
+
}
|
17 |
+
|
18 |
+
|
19 |
+
class TextTokenizer:
|
20 |
+
def __init__(self, model_path):
|
21 |
+
self.sp = spm.SentencePieceProcessor()
|
22 |
+
self.sp.Load(model_path)
|
23 |
+
self.num_tokens = self.sp.vocab_size()
|
24 |
+
|
25 |
+
def encode(self, text):
|
26 |
+
return self.sp.EncodeAsIds(text)
|
27 |
+
|
28 |
+
def decode(self, ids: List[int]):
|
29 |
+
return self.sp.DecodeIds(ids)
|
30 |
+
|
31 |
+
def tokenize(self, text):
|
32 |
+
return self.sp.EncodeAsPieces(text)
|
33 |
+
|
34 |
+
def convert_tokens_to_ids(self, tokens):
|
35 |
+
return [self.sp.PieceToId(token) for token in tokens]
|
36 |
+
|
37 |
+
def convert_token_to_id(self, token):
|
38 |
+
return self.sp.PieceToId(token)
|
39 |
+
|
40 |
+
def convert_id_to_token(self, idx):
|
41 |
+
return self.sp.IdToPiece(idx)
|
42 |
+
|
43 |
+
def __len__(self):
|
44 |
+
return self.num_tokens
|
45 |
+
|
46 |
+
|
47 |
+
class SPTokenizer:
|
48 |
+
def __init__(
|
49 |
+
self,
|
50 |
+
vocab_file,
|
51 |
+
num_image_tokens=20000,
|
52 |
+
max_blank_length=80,
|
53 |
+
byte_fallback=True,
|
54 |
+
):
|
55 |
+
assert vocab_file is not None
|
56 |
+
self.vocab_file = vocab_file
|
57 |
+
self.num_image_tokens = num_image_tokens
|
58 |
+
self.special_tokens = ["[MASK]", "[gMASK]", "[sMASK]", "<unused_0>", "<sop>", "<eop>", "<ENC>", "<dBLOCK>"]
|
59 |
+
self.max_blank_length = max_blank_length
|
60 |
+
self.byte_fallback = byte_fallback
|
61 |
+
self.text_tokenizer = TextTokenizer(vocab_file)
|
62 |
+
|
63 |
+
def _get_text_tokenizer(self):
|
64 |
+
return self.text_tokenizer
|
65 |
+
|
66 |
+
@staticmethod
|
67 |
+
def get_blank_token(length: int):
|
68 |
+
assert length >= 2
|
69 |
+
return f"<|blank_{length}|>"
|
70 |
+
|
71 |
+
@staticmethod
|
72 |
+
def get_tab_token():
|
73 |
+
return f"<|tab|>"
|
74 |
+
|
75 |
+
@property
|
76 |
+
def num_text_tokens(self):
|
77 |
+
return self.text_tokenizer.num_tokens
|
78 |
+
|
79 |
+
@property
|
80 |
+
def num_tokens(self):
|
81 |
+
return self.num_image_tokens + self.num_text_tokens
|
82 |
+
|
83 |
+
@staticmethod
|
84 |
+
def _encode_whitespaces(text: str, max_len: int = 80):
|
85 |
+
text = text.replace("\t", SPTokenizer.get_tab_token())
|
86 |
+
for i in range(max_len, 1, -1):
|
87 |
+
text = text.replace(" " * i, SPTokenizer.get_blank_token(i))
|
88 |
+
return text
|
89 |
+
|
90 |
+
def _preprocess(self, text: str, linebreak=True, whitespaces=True):
|
91 |
+
if linebreak:
|
92 |
+
text = text.replace("\n", "<n>")
|
93 |
+
if whitespaces:
|
94 |
+
text = self._encode_whitespaces(text, max_len=self.max_blank_length)
|
95 |
+
return text
|
96 |
+
|
97 |
+
def encode(
|
98 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
99 |
+
) -> List[int]:
|
100 |
+
"""
|
101 |
+
@param text: Text to encode.
|
102 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
103 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
104 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
105 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
106 |
+
"""
|
107 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
108 |
+
if not add_dummy_prefix:
|
109 |
+
text = "<n>" + text
|
110 |
+
tmp = self._get_text_tokenizer().encode(text)
|
111 |
+
tokens = [x + self.num_image_tokens for x in tmp]
|
112 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
113 |
+
|
114 |
+
def decode(self, text_ids: List[int]) -> str:
|
115 |
+
ids = [int(_id) - self.num_image_tokens for _id in text_ids]
|
116 |
+
ids = [_id for _id in ids if _id >= 0]
|
117 |
+
text = self._get_text_tokenizer().decode(ids)
|
118 |
+
text = text.replace("<n>", "\n")
|
119 |
+
text = text.replace(SPTokenizer.get_tab_token(), "\t")
|
120 |
+
for i in range(2, self.max_blank_length + 1):
|
121 |
+
text = text.replace(self.get_blank_token(i), " " * i)
|
122 |
+
return text
|
123 |
+
|
124 |
+
def tokenize(
|
125 |
+
self, text: str, linebreak=True, whitespaces=True, add_dummy_prefix=True
|
126 |
+
) -> List[str]:
|
127 |
+
"""
|
128 |
+
@param text: Text to encode.
|
129 |
+
@param linebreak: Whether to encode newline (\n) in text.
|
130 |
+
@param whitespaces: Whether to encode multiple whitespaces or tab in text, useful for source code encoding.
|
131 |
+
@param special_tokens: Whether to encode special token ([MASK], [gMASK], etc.) in text.
|
132 |
+
@param add_dummy_prefix: Whether to add dummy blank space in the beginning.
|
133 |
+
"""
|
134 |
+
text = self._preprocess(text, linebreak, whitespaces)
|
135 |
+
if not add_dummy_prefix:
|
136 |
+
text = "<n>" + text
|
137 |
+
tokens = self._get_text_tokenizer().tokenize(text)
|
138 |
+
return tokens if add_dummy_prefix else tokens[2:]
|
139 |
+
|
140 |
+
def __getitem__(self, x: Union[int, str]):
|
141 |
+
if isinstance(x, int):
|
142 |
+
if x < self.num_image_tokens:
|
143 |
+
return "<image_{}>".format(x)
|
144 |
+
else:
|
145 |
+
return self.text_tokenizer.convert_id_to_token(x - self.num_image_tokens)
|
146 |
+
elif isinstance(x, str):
|
147 |
+
if x.startswith("<image_") and x.endswith(">") and x[7:-1].isdigit():
|
148 |
+
return int(x[7:-1])
|
149 |
+
else:
|
150 |
+
return self.text_tokenizer.convert_token_to_id(x) + self.num_image_tokens
|
151 |
+
else:
|
152 |
+
raise ValueError("The key should be str or int.")
|
153 |
+
|
154 |
+
|
155 |
+
class ChatGLMTokenizer(PreTrainedTokenizer):
|
156 |
+
"""
|
157 |
+
Construct a ChatGLM tokenizer. Based on byte-level Byte-Pair-Encoding.
|
158 |
+
|
159 |
+
Args:
|
160 |
+
vocab_file (`str`):
|
161 |
+
Path to the vocabulary file.
|
162 |
+
"""
|
163 |
+
|
164 |
+
vocab_files_names = {"vocab_file": "ice_text.model"}
|
165 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
166 |
+
model_input_names = ["input_ids", "attention_mask", "position_ids"]
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
vocab_file,
|
171 |
+
do_lower_case=False,
|
172 |
+
remove_space=False,
|
173 |
+
bos_token='<sop>',
|
174 |
+
eos_token='<eop>',
|
175 |
+
end_token='</s>',
|
176 |
+
mask_token='[MASK]',
|
177 |
+
gmask_token='[gMASK]',
|
178 |
+
padding_side="left",
|
179 |
+
pad_token="<pad>",
|
180 |
+
unk_token="<unk>",
|
181 |
+
num_image_tokens=20000,
|
182 |
+
**kwargs
|
183 |
+
) -> None:
|
184 |
+
super().__init__(
|
185 |
+
do_lower_case=do_lower_case,
|
186 |
+
remove_space=remove_space,
|
187 |
+
padding_side=padding_side,
|
188 |
+
bos_token=bos_token,
|
189 |
+
eos_token=eos_token,
|
190 |
+
end_token=end_token,
|
191 |
+
mask_token=mask_token,
|
192 |
+
gmask_token=gmask_token,
|
193 |
+
pad_token=pad_token,
|
194 |
+
unk_token=unk_token,
|
195 |
+
num_image_tokens=num_image_tokens,
|
196 |
+
**kwargs
|
197 |
+
)
|
198 |
+
|
199 |
+
self.do_lower_case = do_lower_case
|
200 |
+
self.remove_space = remove_space
|
201 |
+
self.vocab_file = vocab_file
|
202 |
+
|
203 |
+
self.bos_token = bos_token
|
204 |
+
self.eos_token = eos_token
|
205 |
+
self.end_token = end_token
|
206 |
+
self.mask_token = mask_token
|
207 |
+
self.gmask_token = gmask_token
|
208 |
+
|
209 |
+
self.sp_tokenizer = SPTokenizer(vocab_file, num_image_tokens=num_image_tokens)
|
210 |
+
|
211 |
+
""" Initialisation """
|
212 |
+
|
213 |
+
@property
|
214 |
+
def gmask_token_id(self) -> Optional[int]:
|
215 |
+
if self.gmask_token is None:
|
216 |
+
return None
|
217 |
+
return self.convert_tokens_to_ids(self.gmask_token)
|
218 |
+
|
219 |
+
@property
|
220 |
+
def end_token_id(self) -> Optional[int]:
|
221 |
+
"""
|
222 |
+
`Optional[int]`: Id of the end of context token in the vocabulary. Returns `None` if the token has not been
|
223 |
+
set.
|
224 |
+
"""
|
225 |
+
if self.end_token is None:
|
226 |
+
return None
|
227 |
+
return self.convert_tokens_to_ids(self.end_token)
|
228 |
+
|
229 |
+
@property
|
230 |
+
def vocab_size(self):
|
231 |
+
""" Returns vocab size """
|
232 |
+
return self.sp_tokenizer.num_tokens
|
233 |
+
|
234 |
+
def get_vocab(self):
|
235 |
+
""" Returns vocab as a dict """
|
236 |
+
vocab = {self._convert_id_to_token(i): i for i in range(self.vocab_size)}
|
237 |
+
vocab.update(self.added_tokens_encoder)
|
238 |
+
return vocab
|
239 |
+
|
240 |
+
def preprocess_text(self, inputs):
|
241 |
+
if self.remove_space:
|
242 |
+
outputs = " ".join(inputs.strip().split())
|
243 |
+
else:
|
244 |
+
outputs = inputs
|
245 |
+
|
246 |
+
if self.do_lower_case:
|
247 |
+
outputs = outputs.lower()
|
248 |
+
|
249 |
+
return outputs
|
250 |
+
|
251 |
+
def _tokenize(self, text, **kwargs):
|
252 |
+
""" Returns a tokenized string. """
|
253 |
+
text = self.preprocess_text(text)
|
254 |
+
|
255 |
+
seq = self.sp_tokenizer.tokenize(text)
|
256 |
+
|
257 |
+
return seq
|
258 |
+
|
259 |
+
def _decode(
|
260 |
+
self,
|
261 |
+
token_ids: Union[int, List[int]],
|
262 |
+
skip_special_tokens: bool = False,
|
263 |
+
clean_up_tokenization_spaces: bool = True,
|
264 |
+
**kwargs
|
265 |
+
) -> str:
|
266 |
+
if isinstance(token_ids, int):
|
267 |
+
token_ids = [token_ids]
|
268 |
+
if len(token_ids) == 0:
|
269 |
+
return ""
|
270 |
+
if self.pad_token_id in token_ids: # remove pad
|
271 |
+
token_ids = list(filter((self.pad_token_id).__ne__, token_ids))
|
272 |
+
return self.sp_tokenizer.decode(token_ids)
|
273 |
+
|
274 |
+
def _convert_token_to_id(self, token):
|
275 |
+
""" Converts a token (str) in an id using the vocab. """
|
276 |
+
return self.sp_tokenizer[token]
|
277 |
+
|
278 |
+
def _convert_id_to_token(self, index):
|
279 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
280 |
+
return self.sp_tokenizer[index]
|
281 |
+
|
282 |
+
def save_vocabulary(self, save_directory, filename_prefix=None):
|
283 |
+
"""
|
284 |
+
Save the vocabulary and special tokens file to a directory.
|
285 |
+
|
286 |
+
Args:
|
287 |
+
save_directory (`str`):
|
288 |
+
The directory in which to save the vocabulary.
|
289 |
+
filename_prefix (`str`, *optional*):
|
290 |
+
An optional prefix to add to the named of the saved files.
|
291 |
+
|
292 |
+
Returns:
|
293 |
+
`Tuple(str)`: Paths to the files saved.
|
294 |
+
"""
|
295 |
+
if os.path.isdir(save_directory):
|
296 |
+
vocab_file = os.path.join(
|
297 |
+
save_directory, self.vocab_files_names["vocab_file"]
|
298 |
+
)
|
299 |
+
else:
|
300 |
+
vocab_file = save_directory
|
301 |
+
|
302 |
+
with open(self.vocab_file, 'rb') as fin:
|
303 |
+
proto_str = fin.read()
|
304 |
+
|
305 |
+
with open(vocab_file, "wb") as writer:
|
306 |
+
writer.write(proto_str)
|
307 |
+
|
308 |
+
return (vocab_file,)
|
309 |
+
|
310 |
+
def build_inputs_with_special_tokens(
|
311 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
312 |
+
) -> List[int]:
|
313 |
+
"""
|
314 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
315 |
+
adding special tokens. A BERT sequence has the following format:
|
316 |
+
|
317 |
+
- single sequence: `[CLS] X [SEP]`
|
318 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
319 |
+
|
320 |
+
Args:
|
321 |
+
token_ids_0 (`List[int]`):
|
322 |
+
List of IDs to which the special tokens will be added.
|
323 |
+
token_ids_1 (`List[int]`, *optional*):
|
324 |
+
Optional second list of IDs for sequence pairs.
|
325 |
+
|
326 |
+
Returns:
|
327 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
328 |
+
"""
|
329 |
+
gmask_id = self.sp_tokenizer[self.gmask_token]
|
330 |
+
eos_id = self.sp_tokenizer[self.eos_token]
|
331 |
+
token_ids_0 = token_ids_0 + [gmask_id, self.sp_tokenizer[self.bos_token]]
|
332 |
+
if token_ids_1 is not None:
|
333 |
+
token_ids_0 = token_ids_0 + token_ids_1 + [eos_id]
|
334 |
+
return token_ids_0
|
335 |
+
|
336 |
+
def _pad(
|
337 |
+
self,
|
338 |
+
encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding],
|
339 |
+
max_length: Optional[int] = None,
|
340 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
341 |
+
pad_to_multiple_of: Optional[int] = None,
|
342 |
+
return_attention_mask: Optional[bool] = None,
|
343 |
+
) -> dict:
|
344 |
+
"""
|
345 |
+
Pad encoded inputs (on left/right and up to predefined length or max length in the batch)
|
346 |
+
|
347 |
+
Args:
|
348 |
+
encoded_inputs:
|
349 |
+
Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`).
|
350 |
+
max_length: maximum length of the returned list and optionally padding length (see below).
|
351 |
+
Will truncate by taking into account the special tokens.
|
352 |
+
padding_strategy: PaddingStrategy to use for padding.
|
353 |
+
|
354 |
+
- PaddingStrategy.LONGEST Pad to the longest sequence in the batch
|
355 |
+
- PaddingStrategy.MAX_LENGTH: Pad to the max length (default)
|
356 |
+
- PaddingStrategy.DO_NOT_PAD: Do not pad
|
357 |
+
The tokenizer padding sides are defined in self.padding_side:
|
358 |
+
|
359 |
+
- 'left': pads on the left of the sequences
|
360 |
+
- 'right': pads on the right of the sequences
|
361 |
+
pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value.
|
362 |
+
This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability
|
363 |
+
`>= 7.5` (Volta).
|
364 |
+
return_attention_mask:
|
365 |
+
(optional) Set to False to avoid returning attention mask (default: set to model specifics)
|
366 |
+
"""
|
367 |
+
# Load from model defaults
|
368 |
+
bos_token_id = self.sp_tokenizer[self.bos_token]
|
369 |
+
mask_token_id = self.sp_tokenizer[self.mask_token]
|
370 |
+
gmask_token_id = self.sp_tokenizer[self.gmask_token]
|
371 |
+
assert self.padding_side == "left"
|
372 |
+
|
373 |
+
required_input = encoded_inputs[self.model_input_names[0]]
|
374 |
+
seq_length = len(required_input)
|
375 |
+
|
376 |
+
if padding_strategy == PaddingStrategy.LONGEST:
|
377 |
+
max_length = len(required_input)
|
378 |
+
|
379 |
+
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
|
380 |
+
max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
|
381 |
+
|
382 |
+
needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length
|
383 |
+
|
384 |
+
# Initialize attention mask if not present.
|
385 |
+
if max_length is not None:
|
386 |
+
if "attention_mask" not in encoded_inputs:
|
387 |
+
if bos_token_id in required_input:
|
388 |
+
context_length = required_input.index(bos_token_id)
|
389 |
+
else:
|
390 |
+
context_length = seq_length
|
391 |
+
attention_mask = np.ones((1, seq_length, seq_length))
|
392 |
+
attention_mask = np.tril(attention_mask)
|
393 |
+
attention_mask[:, :, :context_length] = 1
|
394 |
+
attention_mask = np.bool_(attention_mask < 0.5)
|
395 |
+
encoded_inputs["attention_mask"] = attention_mask
|
396 |
+
|
397 |
+
if "position_ids" not in encoded_inputs:
|
398 |
+
if bos_token_id in required_input:
|
399 |
+
context_length = required_input.index(bos_token_id)
|
400 |
+
else:
|
401 |
+
context_length = seq_length
|
402 |
+
position_ids = np.arange(seq_length, dtype=np.int64)
|
403 |
+
mask_token = mask_token_id if mask_token_id in required_input else gmask_token_id
|
404 |
+
if mask_token in required_input:
|
405 |
+
mask_position = required_input.index(mask_token)
|
406 |
+
position_ids[context_length:] = mask_position
|
407 |
+
block_position_ids = np.concatenate(
|
408 |
+
[np.zeros(context_length, dtype=np.int64),
|
409 |
+
np.arange(1, seq_length - context_length + 1, dtype=np.int64)])
|
410 |
+
encoded_inputs["position_ids"] = np.stack([position_ids, block_position_ids], axis=0)
|
411 |
+
|
412 |
+
if needs_to_be_padded:
|
413 |
+
difference = max_length - len(required_input)
|
414 |
+
|
415 |
+
if "attention_mask" in encoded_inputs:
|
416 |
+
encoded_inputs["attention_mask"] = np.pad(encoded_inputs["attention_mask"],
|
417 |
+
pad_width=[(0, 0), (difference, 0), (difference, 0)],
|
418 |
+
mode='constant', constant_values=True)
|
419 |
+
if "token_type_ids" in encoded_inputs:
|
420 |
+
encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[
|
421 |
+
"token_type_ids"
|
422 |
+
]
|
423 |
+
if "special_tokens_mask" in encoded_inputs:
|
424 |
+
encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"]
|
425 |
+
if "position_ids" in encoded_inputs:
|
426 |
+
encoded_inputs["position_ids"] = np.pad(encoded_inputs["position_ids"],
|
427 |
+
pad_width=[(0, 0), (difference, 0)])
|
428 |
+
encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input
|
429 |
+
|
430 |
+
return encoded_inputs
|