tidy up
Browse files- .gitignore +162 -0
- PPO-MountainCarContinuous-v0.zip +0 -3
- PPO-MountainCarContinuous-v0/_stable_baselines3_version +0 -1
- PPO-MountainCarContinuous-v0/data +0 -105
- PPO-MountainCarContinuous-v0/policy.optimizer.pth +0 -3
- PPO-MountainCarContinuous-v0/policy.pth +0 -3
- PPO-MountainCarContinuous-v0/pytorch_variables.pth +0 -3
- PPO-MountainCarContinuous-v0/system_info.txt +0 -9
- PPO-asm-v0.zip +0 -3
- PPO-asm-v0/_stable_baselines3_version +0 -1
- PPO-asm-v0/data +0 -105
- PPO-asm-v0/policy.optimizer.pth +0 -3
- PPO-asm-v0/policy.pth +0 -3
- PPO-asm-v0/pytorch_variables.pth +0 -3
- PPO-asm-v0/system_info.txt +0 -9
- config.json +0 -1
- rllib/ppo-asm.yaml +1 -1
- sb3/a2c-asm-v0-1.yml +11 -0
- sb3/ppo-asm-v0-1.yml +11 -0
- sb3/train.py +7 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm-project.org/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
PPO-MountainCarContinuous-v0.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:0d10d965241968068be6019060862aa88a0c02e784dc43042fbec602735c9f3b
|
3 |
-
size 133808
|
|
|
|
|
|
|
|
PPO-MountainCarContinuous-v0/_stable_baselines3_version
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
2.1.0
|
|
|
|
PPO-MountainCarContinuous-v0/data
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"policy_class": {
|
3 |
-
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
-
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f8a7c721e40>",
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8a7c721ee0>",
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8a7c721f80>",
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8a7c722020>",
|
11 |
-
"_build": "<function ActorCriticPolicy._build at 0x7f8a7c7220c0>",
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at 0x7f8a7c722160>",
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8a7c722200>",
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8a7c7222a0>",
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at 0x7f8a7c722340>",
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8a7c7223e0>",
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8a7c722480>",
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8a7c722520>",
|
19 |
-
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at 0x7f8a7c71aec0>"
|
21 |
-
},
|
22 |
-
"verbose": 0,
|
23 |
-
"policy_kwargs": {},
|
24 |
-
"num_timesteps": 61440,
|
25 |
-
"_total_timesteps": 60000,
|
26 |
-
"_num_timesteps_at_start": 0,
|
27 |
-
"seed": null,
|
28 |
-
"action_noise": null,
|
29 |
-
"start_time": 1704319474446146305,
|
30 |
-
"learning_rate": 0.0003,
|
31 |
-
"tensorboard_log": null,
|
32 |
-
"_last_obs": {
|
33 |
-
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "gAWVfQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAIsC3b636dc7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwKGlIwBQ5R0lFKULg=="
|
35 |
-
},
|
36 |
-
"_last_episode_starts": {
|
37 |
-
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
-
},
|
40 |
-
"_last_original_obs": null,
|
41 |
-
"_episode_num": 0,
|
42 |
-
"use_sde": false,
|
43 |
-
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.02400000000000002,
|
45 |
-
"_stats_window_size": 100,
|
46 |
-
"ep_info_buffer": {
|
47 |
-
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "gAWViwcAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEVXjBEa2neMAWyUTecDjAF0lEdAXO00pEx7A3V9lChoBkfAQ2buOS4e92gHTecDaAhHQF0TVsk6cRV1fZQoaAZHwEJE3NLUTctoB03nA2gIR0BddZxrBTGYdX2UKGgGR8BCgag2606YaAdN5wNoCEdAXZv127nPmnV9lChoBkfAQSgCW/rSmmgHTecDaAhHQF3+wXZXdTJ1fZQoaAZHwEBaGzKLbYdoB03nA2gIR0BeJ3ocJdB0dX2UKGgGR8A8shPj4pMIaAdN5wNoCEdAXos75mAbynV9lChoBkfAPZYd+5OJtWgHTecDaAhHQF6ySwGGEf11fZQoaAZHwDsx3B55Z8toB03nA2gIR0BfFQO4G2TgdX2UKGgGR8A6HcSXdCVsaAdN5wNoCEdAXz1Dx9XtB3V9lChoBkfAOEVZs9B8hWgHTecDaAhHQF+f+6Ae7tl1fZQoaAZHwDTxdszl90BoB03nA2gIR0BfxyNGViWndX2UKGgGR8Ay/NFz+3pfaAdN5wNoCEdAYBV1+y7f53V9lChoBkfANCDHjp9qlGgHTecDaAhHQGApcn/kvK51fZQoaAZHwDEy0lZ5iVloB03nA2gIR0BgWmxfOUt7dX2UKGgGR8AxBOQQtjCpaAdN5wNoCEdAYG4JpFkQPXV9lChoBkfALF3cYZVGTmgHTecDaAhHQGCeo7FKkEd1fZQoaAZHwCvWLFXJYDFoB03nA2gIR0Bgse9zwMH9dX2UKGgGR8ApdZr56+nJaAdN5wNoCEdAYOLWuHN5dHV9lChoBkfAKNe1a4c3l2gHTecDaAhHQGD2nMlkYoB1fZQoaAZHwCR3cer+5vtoB03nA2gIR0BhJtUyYXwcdX2UKGgGR8AkXYyO7xusaAdN5wNoCEdAYTnmlImPYHV9lChoBkfAI6zGgi/wiWgHTecDaAhHQGFrM7+1jRV1fZQoaAZHwCE0XUH6dlNoB03nA2gIR0BhffXd0q6OdX2UKGgGR8AhMiJO32EkaAdN5wNoCEdAYa1tdAxBV3V9lChoBkfAG1waisXBQGgHTecDaAhHQGHBUKqn3td1fZQoaAZHwBwIGlhw2l5oB03nA2gIR0Bh86O1fE4vdX2UKGgGR8AZpvQ4S6DoaAdN5wNoCEdAYgbHDJlrdnV9lChoBkfAF1d+G47Rv2gHTecDaAhHQGI5eeFtbcJ1fZQoaAZHwBQdQTEit7toB03nA2gIR0BiTdV7x/d7dX2UKGgGR8AUtHQQcxTLaAdN5wNoCEdAYn4ABDG96HV9lChoBkfAFNiqQzUI9mgHTecDaAhHQGKQ6ltTDO11fZQoaAZHwBCgnUlRgqpoB03nA2gIR0BiwVJJ5E+gdX2UKGgGR8AP/2oNutOmaAdN5wNoCEdAYtTpKSPluHV9lChoBkfAED44Ia99MWgHTecDaAhHQGMFz4+KTB91fZQoaAZHwAx1Fpfx+a1oB03nA2gIR0BjGQO2AoXsdX2UKGgGR8AMjC+De0ojaAdN5wNoCEdAY0oGBWgezXV9lChoBkfACfCtRvWH12gHTecDaAhHQGNeQtBfKIV1fZQoaAZHwAl9B0IToMdoB03nA2gIR0BjjortmcvvdX2UKGgGR8AGiylenhsJaAdN5wNoCEdAY6G7FsHjZXV9lChoBkfABUJVsDW9UWgHTecDaAhHQGO077bcoH91fZQoaAZHwAJPOpsGgSRoB03nA2gIR0Bj5bbeuV5bdX2UKGgGR8ADCEOAiFCcaAdN5wNoCEdAY/kgieNDMXV9lChoBkfAARTo+wC8vmgHTecDaAhHQGQoqiO/+Kl1fZQoaAZHwACoP07KaG5oB03nA2gIR0BkPFPnB+F2dX2UKGgGR7/7EW2w3YL9aAdN5wNoCEdAZG2MQVbiZXV9lChoBke//Z+SbH6uXGgHTecDaAhHQGSBOzhP0qZ1fZQoaAZHv/dqI7/4qPRoB03nA2gIR0BksWN70Fr3dX2UKGgGR7/5hXfZVXFMaAdN5wNoCEdAZMUgUUO/cnV9lChoBke/9TRv3rUsnWgHTecDaAhHQGTxlr2xptd1fZQoaAZHv/S8stkFwDNoB03nA2gIR0BlBICIUJv6dX2UKGgGR7/zccIZ62ORaAdN5wNoCEdAZTTlXA/LT3V9lChoBke/8bA9FF2FFmgHTecDaAhHQGVHqZ2IO6N1fZQoaAZHv/CoJiRW915oB03nA2gIR0BldtvbXYlIdX2UKGgGR7/w4TsY2sJZaAdN5wNoCEdAZYnIz3yqdnV9lChoBke/7rBGhEjPfWgHTecDaAhHQGW6eiBXjlx1fZQoaAZHv+3Cojv/io9oB03nA2gIR0BlzUjPfKp2dX2UKGgGR7/qDx9XtBv8aAdN5wNoCEdAZf6xh2GIsXV9lChoBke/54aYNRWLgmgHTecDaAhHQGYRvcrRSgp1fZQoaAZHv+hsqJ/G2kVoB03nA2gIR0BmQUlsxfv4dX2UKGgGR7/k1Iqbz9S/aAdN5wNoCEdAZlRuCPIXCXVlLg=="
|
49 |
-
},
|
50 |
-
"ep_success_buffer": {
|
51 |
-
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
-
},
|
54 |
-
"_n_updates": 330,
|
55 |
-
"observation_space": {
|
56 |
-
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
-
"dtype": "float32",
|
59 |
-
"bounded_below": "[ True True]",
|
60 |
-
"bounded_above": "[ True True]",
|
61 |
-
"_shape": [
|
62 |
-
2
|
63 |
-
],
|
64 |
-
"low": "[-1.2 -0.07]",
|
65 |
-
"high": "[0.6 0.07]",
|
66 |
-
"low_repr": "[-1.2 -0.07]",
|
67 |
-
"high_repr": "[0.6 0.07]",
|
68 |
-
"_np_random": null
|
69 |
-
},
|
70 |
-
"action_space": {
|
71 |
-
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
-
":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
-
"dtype": "float32",
|
74 |
-
"bounded_below": "[ True]",
|
75 |
-
"bounded_above": "[ True]",
|
76 |
-
"_shape": [
|
77 |
-
1
|
78 |
-
],
|
79 |
-
"low": "[-1.]",
|
80 |
-
"high": "[1.]",
|
81 |
-
"low_repr": "-1.0",
|
82 |
-
"high_repr": "1.0",
|
83 |
-
"_np_random": null
|
84 |
-
},
|
85 |
-
"n_envs": 1,
|
86 |
-
"n_steps": 2048,
|
87 |
-
"gamma": 0.99,
|
88 |
-
"gae_lambda": 0.95,
|
89 |
-
"ent_coef": 0.0,
|
90 |
-
"vf_coef": 0.5,
|
91 |
-
"max_grad_norm": 0.5,
|
92 |
-
"batch_size": 64,
|
93 |
-
"n_epochs": 10,
|
94 |
-
"clip_range": {
|
95 |
-
":type:": "<class 'function'>",
|
96 |
-
":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
-
},
|
98 |
-
"clip_range_vf": null,
|
99 |
-
"normalize_advantage": true,
|
100 |
-
"target_kl": null,
|
101 |
-
"lr_schedule": {
|
102 |
-
":type:": "<class 'function'>",
|
103 |
-
":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
-
}
|
105 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PPO-MountainCarContinuous-v0/policy.optimizer.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:4a084e777974b5e341bd80328b420ba3a8a8704bb3884393e91ed268f70d2058
|
3 |
-
size 80944
|
|
|
|
|
|
|
|
PPO-MountainCarContinuous-v0/policy.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:13c34df3b6e8fc22312e602e025a25deb9edb48d9158b1b7c0a1e31f3e7dda23
|
3 |
-
size 39806
|
|
|
|
|
|
|
|
PPO-MountainCarContinuous-v0/pytorch_variables.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
-
size 431
|
|
|
|
|
|
|
|
PPO-MountainCarContinuous-v0/system_info.txt
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
- OS: Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O
|
2 |
-
- Python: 3.11.5
|
3 |
-
- Stable-Baselines3: 2.1.0
|
4 |
-
- PyTorch: 2.0.1+cu117
|
5 |
-
- GPU Enabled: True
|
6 |
-
- Numpy: 1.25.2
|
7 |
-
- Cloudpickle: 2.2.1
|
8 |
-
- Gymnasium: 0.29.1
|
9 |
-
- OpenAI Gym: 0.26.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PPO-asm-v0.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:f8a1b9da40221a0abf384b4ccb03f47e62c3b4010ad4bf7a380373c93501b289
|
3 |
-
size 129920
|
|
|
|
|
|
|
|
PPO-asm-v0/_stable_baselines3_version
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
2.1.0
|
|
|
|
PPO-asm-v0/data
DELETED
@@ -1,105 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"policy_class": {
|
3 |
-
":type:": "<class 'abc.ABCMeta'>",
|
4 |
-
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
-
"__module__": "stable_baselines3.common.policies",
|
6 |
-
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c57b23880>",
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c57b23920>",
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c57b239c0>",
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c57b23a60>",
|
11 |
-
"_build": "<function ActorCriticPolicy._build at 0x7f9c57b23b00>",
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at 0x7f9c57b23ba0>",
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c57b23c40>",
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c57b23ce0>",
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at 0x7f9c57b23d80>",
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c57b23e20>",
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c57b23ec0>",
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c57b23f60>",
|
19 |
-
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at 0x7f9c57b38700>"
|
21 |
-
},
|
22 |
-
"verbose": 0,
|
23 |
-
"policy_kwargs": {},
|
24 |
-
"num_timesteps": 6144,
|
25 |
-
"_total_timesteps": 6000,
|
26 |
-
"_num_timesteps_at_start": 0,
|
27 |
-
"seed": null,
|
28 |
-
"action_noise": null,
|
29 |
-
"start_time": 1704322583040231963,
|
30 |
-
"learning_rate": 0.0003,
|
31 |
-
"tensorboard_log": "/home/jovyan/logs",
|
32 |
-
"_last_obs": {
|
33 |
-
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLAYaUjAFDlHSUUpQu"
|
35 |
-
},
|
36 |
-
"_last_episode_starts": {
|
37 |
-
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
39 |
-
},
|
40 |
-
"_last_original_obs": null,
|
41 |
-
"_episode_num": 0,
|
42 |
-
"use_sde": false,
|
43 |
-
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.02400000000000002,
|
45 |
-
"_stats_window_size": 100,
|
46 |
-
"ep_info_buffer": {
|
47 |
-
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "gAWV4gAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP+Q7YChew9uMAWyUTegDjAF0lEdAAXc6/7BO6HV9lChoBkc/9v+zdDYywmgHTegDaAhHQAcYY77sOXp1fZQoaAZHQBNZlOGj9GZoB03oA2gIR0ASCpDNQj2SdX2UKGgGR0AUrFo+OfdzaAdN6ANoCEdAFL5paiblR3V9lChoBkc//YYqG1x82WgHTegDaAhHQBtLBj4Hoox1fZQoaAZHQAAh7u2JBPdoB03oA2gIR0AeCUgSvkimdWUu"
|
49 |
-
},
|
50 |
-
"ep_success_buffer": {
|
51 |
-
":type:": "<class 'collections.deque'>",
|
52 |
-
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
-
},
|
54 |
-
"_n_updates": 30,
|
55 |
-
"observation_space": {
|
56 |
-
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
-
":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
-
"dtype": "float32",
|
59 |
-
"bounded_below": "[ True]",
|
60 |
-
"bounded_above": "[ True]",
|
61 |
-
"_shape": [
|
62 |
-
1
|
63 |
-
],
|
64 |
-
"low": "[-1.]",
|
65 |
-
"high": "[1.]",
|
66 |
-
"low_repr": "-1.0",
|
67 |
-
"high_repr": "1.0",
|
68 |
-
"_np_random": null
|
69 |
-
},
|
70 |
-
"action_space": {
|
71 |
-
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
-
":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
-
"dtype": "float32",
|
74 |
-
"bounded_below": "[ True]",
|
75 |
-
"bounded_above": "[ True]",
|
76 |
-
"_shape": [
|
77 |
-
1
|
78 |
-
],
|
79 |
-
"low": "[-1.]",
|
80 |
-
"high": "[1.]",
|
81 |
-
"low_repr": "-1.0",
|
82 |
-
"high_repr": "1.0",
|
83 |
-
"_np_random": null
|
84 |
-
},
|
85 |
-
"n_envs": 1,
|
86 |
-
"n_steps": 2048,
|
87 |
-
"gamma": 0.99,
|
88 |
-
"gae_lambda": 0.95,
|
89 |
-
"ent_coef": 0.0,
|
90 |
-
"vf_coef": 0.5,
|
91 |
-
"max_grad_norm": 0.5,
|
92 |
-
"batch_size": 64,
|
93 |
-
"n_epochs": 10,
|
94 |
-
"clip_range": {
|
95 |
-
":type:": "<class 'function'>",
|
96 |
-
":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
-
},
|
98 |
-
"clip_range_vf": null,
|
99 |
-
"normalize_advantage": true,
|
100 |
-
"target_kl": null,
|
101 |
-
"lr_schedule": {
|
102 |
-
":type:": "<class 'function'>",
|
103 |
-
":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
-
}
|
105 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
PPO-asm-v0/policy.optimizer.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:1a57aad0119b603581732bd67cc48664dd696aca0f5f0a4eb6463f63530efff7
|
3 |
-
size 79920
|
|
|
|
|
|
|
|
PPO-asm-v0/policy.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:09a983bc829155dd7839b26a12ced4c6cbdde771438dc02d0f16a021faf738d8
|
3 |
-
size 39294
|
|
|
|
|
|
|
|
PPO-asm-v0/pytorch_variables.pth
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
-
size 431
|
|
|
|
|
|
|
|
PPO-asm-v0/system_info.txt
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
- OS: Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O
|
2 |
-
- Python: 3.11.5
|
3 |
-
- Stable-Baselines3: 2.1.0
|
4 |
-
- PyTorch: 2.0.1+cu117
|
5 |
-
- GPU Enabled: True
|
6 |
-
- Numpy: 1.26.3
|
7 |
-
- Cloudpickle: 2.2.1
|
8 |
-
- Gymnasium: 0.29.1
|
9 |
-
- OpenAI Gym: 0.26.2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f9c57b23880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9c57b23920>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9c57b239c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9c57b23a60>", "_build": "<function ActorCriticPolicy._build at 0x7f9c57b23b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f9c57b23ba0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f9c57b23c40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9c57b23ce0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9c57b23d80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9c57b23e20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9c57b23ec0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9c57b23f60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9c57b38700>"}, "verbose": 0, "policy_kwargs": {}, "num_timesteps": 6144, "_total_timesteps": 6000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1704322583040231963, "learning_rate": 0.0003, "tensorboard_log": "/home/jovyan/logs", "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVeQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAgL+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwFLAYaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4gAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHP+Q7YChew9uMAWyUTegDjAF0lEdAAXc6/7BO6HV9lChoBkc/9v+zdDYywmgHTegDaAhHQAcYY77sOXp1fZQoaAZHQBNZlOGj9GZoB03oA2gIR0ASCpDNQj2SdX2UKGgGR0AUrFo+OfdzaAdN6ANoCEdAFL5paiblR3V9lChoBkc//YYqG1x82WgHTegDaAhHQBtLBj4Hoox1fZQoaAZHQAAh7u2JBPdoB03oA2gIR0AeCUgSvkimdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-1.]", "high": "[1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWViQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAQAAAAAAAAABlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYBAAAAAAAAAAGUaBVLAYWUaBl0lFKUjAZfc2hhcGWUSwGFlIwDbG93lGgRKJYEAAAAAAAAAAAAgL+UaAtLAYWUaBl0lFKUjARoaWdolGgRKJYEAAAAAAAAAAAAgD+UaAtLAYWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True]", "bounded_above": "[ True]", "_shape": [1], "low": "[-1.]", "high": "[1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 1, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5gIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjFIvc3J2L2NvbmRhL2VudnMvc2IzL2xpYi9weXRob24zLjExL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUS4NDCPiAANgPEogKlEMAlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMUi9zcnYvY29uZGEvZW52cy9zYjMvbGliL3B5dGhvbjMuMTEvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBhoDYwMX19xdWFsbmFtZV9flGgOjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.5.6-76060506-generic-x86_64-with-glibc2.35 # 202310061235~1697396945~22.04~9283e32 SMP PREEMPT_DYNAMIC Sun O", "Python": "3.11.5", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu117", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
|
|
|
rllib/ppo-asm.yaml
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
asm:
|
2 |
-
env:
|
3 |
run: PPO
|
4 |
stop:
|
5 |
time_total_s: 24000
|
|
|
1 |
asm:
|
2 |
+
env: ecorl.envs.asm.AsmEnv
|
3 |
run: PPO
|
4 |
stop:
|
5 |
time_total_s: 24000
|
sb3/a2c-asm-v0-1.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# stable-baselines3 configuration
|
2 |
+
|
3 |
+
algo: "A2C"
|
4 |
+
env_id: "asm-v0"
|
5 |
+
n_envs: 12
|
6 |
+
tensorboard: "/home/jovyan/logs"
|
7 |
+
total_timesteps: 60000
|
8 |
+
config: {}
|
9 |
+
use_sde: True
|
10 |
+
id: "1"
|
11 |
+
repo: "cboettig/rl-ecology"
|
sb3/ppo-asm-v0-1.yml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# stable-baselines3 configuration
|
2 |
+
|
3 |
+
algo: "PPO"
|
4 |
+
env_id: "asm-v0"
|
5 |
+
n_envs: 12
|
6 |
+
tensorboard: "/home/jovyan/logs"
|
7 |
+
total_timesteps: 6000000
|
8 |
+
config: {}
|
9 |
+
use_sde: True
|
10 |
+
id: "1"
|
11 |
+
repo: "cboettig/rl-ecology"
|
sb3/train.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import argparse
|
2 |
+
parser = argparse.ArgumentParser()
|
3 |
+
parser.add_argument("-f", "--file", help="Path config file", type=str)
|
4 |
+
args = parser.parse_args()
|
5 |
+
|
6 |
+
from ecorl.utils import sb3_train
|
7 |
+
sb3_train(args.file)
|