cbpuschmann
commited on
Commit
•
7c9a1c8
1
Parent(s):
e952965
Add SetFit model
Browse files- 1_Pooling/config.json +10 -0
- README.md +720 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +8 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,720 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- setfit
|
4 |
+
- sentence-transformers
|
5 |
+
- text-classification
|
6 |
+
- generated_from_setfit_trainer
|
7 |
+
widget:
|
8 |
+
- text: ' "Ein Tempolimit auf deutschen Autobahnen wäre ein Schlag ins Gesicht aller
|
9 |
+
Autofahrer, die Freiheit und Unabhängigkeit schätzen."'
|
10 |
+
- text: Die Bundesregierung prüft derzeit mehrere Gesetzesinitiativen, die ein generelles
|
11 |
+
Tempolimit auf deutschen Autobahnen vorsehen.
|
12 |
+
- text: ' Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!'
|
13 |
+
- text: '"Während sich unsere Politiker auf ihren Klimakonferenzen über die Notwendigkeit
|
14 |
+
neuer Heizungssysteme unterhalten, vergessen sie dabei geflissentlich, dass die
|
15 |
+
einfache Frau Schmidt oder der einfache Herr Müller bald jeden zweiten Lohnscheck
|
16 |
+
direkt in die Kasse des Heizungsexperten oder des Energiekonzerns überweisen werden."'
|
17 |
+
- text: ' "Das geplante Heizungsgesetz ist ein weiterer Schritt in Richtung staatlicher
|
18 |
+
Bevormundung und wird die Bürger in die Armut treiben."'
|
19 |
+
metrics:
|
20 |
+
- accuracy
|
21 |
+
pipeline_tag: text-classification
|
22 |
+
library_name: setfit
|
23 |
+
inference: true
|
24 |
+
base_model: sentence-transformers/all-MiniLM-L6-v2
|
25 |
+
model-index:
|
26 |
+
- name: SetFit with sentence-transformers/all-MiniLM-L6-v2
|
27 |
+
results:
|
28 |
+
- task:
|
29 |
+
type: text-classification
|
30 |
+
name: Text Classification
|
31 |
+
dataset:
|
32 |
+
name: Unknown
|
33 |
+
type: unknown
|
34 |
+
split: test
|
35 |
+
metrics:
|
36 |
+
- type: accuracy
|
37 |
+
value: 0.931899641577061
|
38 |
+
name: Accuracy
|
39 |
+
---
|
40 |
+
|
41 |
+
# SetFit with sentence-transformers/all-MiniLM-L6-v2
|
42 |
+
|
43 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
44 |
+
|
45 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
46 |
+
|
47 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
48 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
49 |
+
|
50 |
+
## Model Details
|
51 |
+
|
52 |
+
### Model Description
|
53 |
+
- **Model Type:** SetFit
|
54 |
+
- **Sentence Transformer body:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2)
|
55 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
56 |
+
- **Maximum Sequence Length:** 256 tokens
|
57 |
+
- **Number of Classes:** 3 classes
|
58 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
59 |
+
<!-- - **Language:** Unknown -->
|
60 |
+
<!-- - **License:** Unknown -->
|
61 |
+
|
62 |
+
### Model Sources
|
63 |
+
|
64 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
65 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
66 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
67 |
+
|
68 |
+
### Model Labels
|
69 |
+
| Label | Examples |
|
70 |
+
|:-----------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
71 |
+
| neutral | <ul><li>' Die Aktionen von Klima-Aktivismus-Gruppen wie Fridays for Future oder die Letzte Generation polarisieren die Öffentlichkeit, während sie gleichzeitig wichtige Diskussionen über den Klimawandel anstoßen.'</li><li>'Die Diskussion um ein generelles Tempolimit auf Autobahnen hat in den vergangenen Wochen an Fahrt gewonnen und sowohl Befürworter als auch Gegner haben ihre Positionen deutlich gemacht.'</li><li>' "Das geplante Heizungsgesetz sieht vor, dass ab 2024 in Neubauten und bei der Sanierung von Bestandsgebäuden verstärkt auf Wärmepumpen gesetzt werden soll."'</li></ul> |
|
72 |
+
| supportive | <ul><li>'Die Einführung eines generellen Tempolimits auf deutschen Autobahnen würde nicht nur zu einer Senkung des Kraftstoffverbrauchs und der Treibhausgasemissionen führen, sondern auch die Verkehrssicherheit erhöhen.'</li><li>' "Ein nationales Tempolimit auf Autobahnen könnte laut Experten die Verkehrssicherheit erheblich verbessern und gleichzeitig den CO2-Ausstoß reduzieren."'</li><li>' "Das geplante Heizungsgesetz könnte einen wichtigen Beitrag zur Reduzierung von CO2-Emissionen leisten und somit einen bedeutenden Schritt in Richtung Klimaneutralität darstellen."'</li></ul> |
|
73 |
+
| opposed | <ul><li>'Die Freiheit der Straße, ein Stück deutscher Identität, das in Gefahr geraten könnte, wenn die politischen Tempolimit-Fanatiker ihren Willen durchsetzen.'</li><li>' "Es reicht! Wann hören diese Klima-Aktivisten endlich auf, unsere Straßen zu blockieren und den Alltag der hart arbeitenden Bürger zu stören?"'</li><li>'„Die Blockaden von Straßen und Autobahnen durch die Letzte Generation sorgen für tägliche Nervosität bei Pendler und Anwohner, die sich fragen, wann diese ständigen Behinderungen endlich ein Ende haben werden.“'</li></ul> |
|
74 |
+
|
75 |
+
## Evaluation
|
76 |
+
|
77 |
+
### Metrics
|
78 |
+
| Label | Accuracy |
|
79 |
+
|:--------|:---------|
|
80 |
+
| **all** | 0.9319 |
|
81 |
+
|
82 |
+
## Uses
|
83 |
+
|
84 |
+
### Direct Use for Inference
|
85 |
+
|
86 |
+
First install the SetFit library:
|
87 |
+
|
88 |
+
```bash
|
89 |
+
pip install setfit
|
90 |
+
```
|
91 |
+
|
92 |
+
Then you can load this model and run inference.
|
93 |
+
|
94 |
+
```python
|
95 |
+
from setfit import SetFitModel
|
96 |
+
|
97 |
+
# Download from the 🤗 Hub
|
98 |
+
model = SetFitModel.from_pretrained("cbpuschmann/MiniLM-klimacoder_v0.5")
|
99 |
+
# Run inference
|
100 |
+
preds = model(" Das Tempolimit auf Autobahnen würde die Freiheit der Autofahrer massiv einschränken!")
|
101 |
+
```
|
102 |
+
|
103 |
+
<!--
|
104 |
+
### Downstream Use
|
105 |
+
|
106 |
+
*List how someone could finetune this model on their own dataset.*
|
107 |
+
-->
|
108 |
+
|
109 |
+
<!--
|
110 |
+
### Out-of-Scope Use
|
111 |
+
|
112 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
113 |
+
-->
|
114 |
+
|
115 |
+
<!--
|
116 |
+
## Bias, Risks and Limitations
|
117 |
+
|
118 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
119 |
+
-->
|
120 |
+
|
121 |
+
<!--
|
122 |
+
### Recommendations
|
123 |
+
|
124 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
125 |
+
-->
|
126 |
+
|
127 |
+
## Training Details
|
128 |
+
|
129 |
+
### Training Set Metrics
|
130 |
+
| Training set | Min | Median | Max |
|
131 |
+
|:-------------|:----|:--------|:----|
|
132 |
+
| Word count | 11 | 25.5421 | 57 |
|
133 |
+
|
134 |
+
| Label | Training Sample Count |
|
135 |
+
|:-----------|:----------------------|
|
136 |
+
| neutral | 326 |
|
137 |
+
| opposed | 394 |
|
138 |
+
| supportive | 396 |
|
139 |
+
|
140 |
+
### Training Hyperparameters
|
141 |
+
- batch_size: (32, 32)
|
142 |
+
- num_epochs: (1, 1)
|
143 |
+
- max_steps: -1
|
144 |
+
- sampling_strategy: oversampling
|
145 |
+
- body_learning_rate: (2e-05, 1e-05)
|
146 |
+
- head_learning_rate: 0.01
|
147 |
+
- loss: CosineSimilarityLoss
|
148 |
+
- distance_metric: cosine_distance
|
149 |
+
- margin: 0.25
|
150 |
+
- end_to_end: False
|
151 |
+
- use_amp: False
|
152 |
+
- warmup_proportion: 0.1
|
153 |
+
- l2_weight: 0.01
|
154 |
+
- seed: 42
|
155 |
+
- eval_max_steps: -1
|
156 |
+
- load_best_model_at_end: False
|
157 |
+
|
158 |
+
### Training Results
|
159 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
160 |
+
|:------:|:-----:|:-------------:|:---------------:|
|
161 |
+
| 0.0000 | 1 | 0.2393 | - |
|
162 |
+
| 0.0019 | 50 | 0.2748 | - |
|
163 |
+
| 0.0039 | 100 | 0.2607 | - |
|
164 |
+
| 0.0058 | 150 | 0.2486 | - |
|
165 |
+
| 0.0077 | 200 | 0.2465 | - |
|
166 |
+
| 0.0097 | 250 | 0.246 | - |
|
167 |
+
| 0.0116 | 300 | 0.2454 | - |
|
168 |
+
| 0.0135 | 350 | 0.2406 | - |
|
169 |
+
| 0.0155 | 400 | 0.235 | - |
|
170 |
+
| 0.0174 | 450 | 0.2269 | - |
|
171 |
+
| 0.0193 | 500 | 0.2184 | - |
|
172 |
+
| 0.0213 | 550 | 0.2095 | - |
|
173 |
+
| 0.0232 | 600 | 0.1833 | - |
|
174 |
+
| 0.0251 | 650 | 0.1777 | - |
|
175 |
+
| 0.0271 | 700 | 0.1548 | - |
|
176 |
+
| 0.0290 | 750 | 0.1464 | - |
|
177 |
+
| 0.0310 | 800 | 0.1326 | - |
|
178 |
+
| 0.0329 | 850 | 0.1304 | - |
|
179 |
+
| 0.0348 | 900 | 0.1237 | - |
|
180 |
+
| 0.0368 | 950 | 0.1163 | - |
|
181 |
+
| 0.0387 | 1000 | 0.1129 | - |
|
182 |
+
| 0.0406 | 1050 | 0.1017 | - |
|
183 |
+
| 0.0426 | 1100 | 0.0907 | - |
|
184 |
+
| 0.0445 | 1150 | 0.0857 | - |
|
185 |
+
| 0.0464 | 1200 | 0.0645 | - |
|
186 |
+
| 0.0484 | 1250 | 0.0641 | - |
|
187 |
+
| 0.0503 | 1300 | 0.0514 | - |
|
188 |
+
| 0.0522 | 1350 | 0.0442 | - |
|
189 |
+
| 0.0542 | 1400 | 0.0342 | - |
|
190 |
+
| 0.0561 | 1450 | 0.0291 | - |
|
191 |
+
| 0.0580 | 1500 | 0.0243 | - |
|
192 |
+
| 0.0600 | 1550 | 0.0185 | - |
|
193 |
+
| 0.0619 | 1600 | 0.0142 | - |
|
194 |
+
| 0.0638 | 1650 | 0.0092 | - |
|
195 |
+
| 0.0658 | 1700 | 0.0112 | - |
|
196 |
+
| 0.0677 | 1750 | 0.0076 | - |
|
197 |
+
| 0.0696 | 1800 | 0.0046 | - |
|
198 |
+
| 0.0716 | 1850 | 0.0038 | - |
|
199 |
+
| 0.0735 | 1900 | 0.0025 | - |
|
200 |
+
| 0.0754 | 1950 | 0.0028 | - |
|
201 |
+
| 0.0774 | 2000 | 0.0034 | - |
|
202 |
+
| 0.0793 | 2050 | 0.0022 | - |
|
203 |
+
| 0.0812 | 2100 | 0.0028 | - |
|
204 |
+
| 0.0832 | 2150 | 0.0025 | - |
|
205 |
+
| 0.0851 | 2200 | 0.0025 | - |
|
206 |
+
| 0.0870 | 2250 | 0.0011 | - |
|
207 |
+
| 0.0890 | 2300 | 0.0013 | - |
|
208 |
+
| 0.0909 | 2350 | 0.0019 | - |
|
209 |
+
| 0.0929 | 2400 | 0.0006 | - |
|
210 |
+
| 0.0948 | 2450 | 0.0013 | - |
|
211 |
+
| 0.0967 | 2500 | 0.0005 | - |
|
212 |
+
| 0.0987 | 2550 | 0.0006 | - |
|
213 |
+
| 0.1006 | 2600 | 0.0012 | - |
|
214 |
+
| 0.1025 | 2650 | 0.0016 | - |
|
215 |
+
| 0.1045 | 2700 | 0.0005 | - |
|
216 |
+
| 0.1064 | 2750 | 0.0004 | - |
|
217 |
+
| 0.1083 | 2800 | 0.0003 | - |
|
218 |
+
| 0.1103 | 2850 | 0.0008 | - |
|
219 |
+
| 0.1122 | 2900 | 0.001 | - |
|
220 |
+
| 0.1141 | 2950 | 0.0018 | - |
|
221 |
+
| 0.1161 | 3000 | 0.0005 | - |
|
222 |
+
| 0.1180 | 3050 | 0.0002 | - |
|
223 |
+
| 0.1199 | 3100 | 0.0005 | - |
|
224 |
+
| 0.1219 | 3150 | 0.0006 | - |
|
225 |
+
| 0.1238 | 3200 | 0.0017 | - |
|
226 |
+
| 0.1257 | 3250 | 0.0009 | - |
|
227 |
+
| 0.1277 | 3300 | 0.0026 | - |
|
228 |
+
| 0.1296 | 3350 | 0.0008 | - |
|
229 |
+
| 0.1315 | 3400 | 0.0009 | - |
|
230 |
+
| 0.1335 | 3450 | 0.0013 | - |
|
231 |
+
| 0.1354 | 3500 | 0.0009 | - |
|
232 |
+
| 0.1373 | 3550 | 0.0011 | - |
|
233 |
+
| 0.1393 | 3600 | 0.0008 | - |
|
234 |
+
| 0.1412 | 3650 | 0.0004 | - |
|
235 |
+
| 0.1431 | 3700 | 0.0009 | - |
|
236 |
+
| 0.1451 | 3750 | 0.0008 | - |
|
237 |
+
| 0.1470 | 3800 | 0.0012 | - |
|
238 |
+
| 0.1489 | 3850 | 0.001 | - |
|
239 |
+
| 0.1509 | 3900 | 0.0003 | - |
|
240 |
+
| 0.1528 | 3950 | 0.0005 | - |
|
241 |
+
| 0.1548 | 4000 | 0.0006 | - |
|
242 |
+
| 0.1567 | 4050 | 0.0007 | - |
|
243 |
+
| 0.1586 | 4100 | 0.0009 | - |
|
244 |
+
| 0.1606 | 4150 | 0.0003 | - |
|
245 |
+
| 0.1625 | 4200 | 0.0001 | - |
|
246 |
+
| 0.1644 | 4250 | 0.0011 | - |
|
247 |
+
| 0.1664 | 4300 | 0.0004 | - |
|
248 |
+
| 0.1683 | 4350 | 0.0005 | - |
|
249 |
+
| 0.1702 | 4400 | 0.001 | - |
|
250 |
+
| 0.1722 | 4450 | 0.0001 | - |
|
251 |
+
| 0.1741 | 4500 | 0.0001 | - |
|
252 |
+
| 0.1760 | 4550 | 0.0001 | - |
|
253 |
+
| 0.1780 | 4600 | 0.0007 | - |
|
254 |
+
| 0.1799 | 4650 | 0.0001 | - |
|
255 |
+
| 0.1818 | 4700 | 0.0 | - |
|
256 |
+
| 0.1838 | 4750 | 0.0 | - |
|
257 |
+
| 0.1857 | 4800 | 0.0001 | - |
|
258 |
+
| 0.1876 | 4850 | 0.0001 | - |
|
259 |
+
| 0.1896 | 4900 | 0.0 | - |
|
260 |
+
| 0.1915 | 4950 | 0.0002 | - |
|
261 |
+
| 0.1934 | 5000 | 0.0008 | - |
|
262 |
+
| 0.1954 | 5050 | 0.0006 | - |
|
263 |
+
| 0.1973 | 5100 | 0.0001 | - |
|
264 |
+
| 0.1992 | 5150 | 0.0 | - |
|
265 |
+
| 0.2012 | 5200 | 0.0 | - |
|
266 |
+
| 0.2031 | 5250 | 0.0006 | - |
|
267 |
+
| 0.2050 | 5300 | 0.0009 | - |
|
268 |
+
| 0.2070 | 5350 | 0.0001 | - |
|
269 |
+
| 0.2089 | 5400 | 0.0004 | - |
|
270 |
+
| 0.2108 | 5450 | 0.0032 | - |
|
271 |
+
| 0.2128 | 5500 | 0.0029 | - |
|
272 |
+
| 0.2147 | 5550 | 0.001 | - |
|
273 |
+
| 0.2167 | 5600 | 0.0014 | - |
|
274 |
+
| 0.2186 | 5650 | 0.0004 | - |
|
275 |
+
| 0.2205 | 5700 | 0.0034 | - |
|
276 |
+
| 0.2225 | 5750 | 0.0003 | - |
|
277 |
+
| 0.2244 | 5800 | 0.0002 | - |
|
278 |
+
| 0.2263 | 5850 | 0.0001 | - |
|
279 |
+
| 0.2283 | 5900 | 0.0 | - |
|
280 |
+
| 0.2302 | 5950 | 0.0 | - |
|
281 |
+
| 0.2321 | 6000 | 0.0 | - |
|
282 |
+
| 0.2341 | 6050 | 0.0 | - |
|
283 |
+
| 0.2360 | 6100 | 0.0 | - |
|
284 |
+
| 0.2379 | 6150 | 0.0 | - |
|
285 |
+
| 0.2399 | 6200 | 0.0 | - |
|
286 |
+
| 0.2418 | 6250 | 0.0 | - |
|
287 |
+
| 0.2437 | 6300 | 0.0001 | - |
|
288 |
+
| 0.2457 | 6350 | 0.0024 | - |
|
289 |
+
| 0.2476 | 6400 | 0.0009 | - |
|
290 |
+
| 0.2495 | 6450 | 0.0005 | - |
|
291 |
+
| 0.2515 | 6500 | 0.0016 | - |
|
292 |
+
| 0.2534 | 6550 | 0.0003 | - |
|
293 |
+
| 0.2553 | 6600 | 0.0001 | - |
|
294 |
+
| 0.2573 | 6650 | 0.0 | - |
|
295 |
+
| 0.2592 | 6700 | 0.0 | - |
|
296 |
+
| 0.2611 | 6750 | 0.0 | - |
|
297 |
+
| 0.2631 | 6800 | 0.0 | - |
|
298 |
+
| 0.2650 | 6850 | 0.0 | - |
|
299 |
+
| 0.2669 | 6900 | 0.0 | - |
|
300 |
+
| 0.2689 | 6950 | 0.0 | - |
|
301 |
+
| 0.2708 | 7000 | 0.0 | - |
|
302 |
+
| 0.2727 | 7050 | 0.0 | - |
|
303 |
+
| 0.2747 | 7100 | 0.0 | - |
|
304 |
+
| 0.2766 | 7150 | 0.0 | - |
|
305 |
+
| 0.2786 | 7200 | 0.0 | - |
|
306 |
+
| 0.2805 | 7250 | 0.0002 | - |
|
307 |
+
| 0.2824 | 7300 | 0.0006 | - |
|
308 |
+
| 0.2844 | 7350 | 0.0008 | - |
|
309 |
+
| 0.2863 | 7400 | 0.0013 | - |
|
310 |
+
| 0.2882 | 7450 | 0.0001 | - |
|
311 |
+
| 0.2902 | 7500 | 0.0005 | - |
|
312 |
+
| 0.2921 | 7550 | 0.0 | - |
|
313 |
+
| 0.2940 | 7600 | 0.0 | - |
|
314 |
+
| 0.2960 | 7650 | 0.0 | - |
|
315 |
+
| 0.2979 | 7700 | 0.0006 | - |
|
316 |
+
| 0.2998 | 7750 | 0.0 | - |
|
317 |
+
| 0.3018 | 7800 | 0.0 | - |
|
318 |
+
| 0.3037 | 7850 | 0.0 | - |
|
319 |
+
| 0.3056 | 7900 | 0.0 | - |
|
320 |
+
| 0.3076 | 7950 | 0.0 | - |
|
321 |
+
| 0.3095 | 8000 | 0.0 | - |
|
322 |
+
| 0.3114 | 8050 | 0.0 | - |
|
323 |
+
| 0.3134 | 8100 | 0.0 | - |
|
324 |
+
| 0.3153 | 8150 | 0.0 | - |
|
325 |
+
| 0.3172 | 8200 | 0.0 | - |
|
326 |
+
| 0.3192 | 8250 | 0.0 | - |
|
327 |
+
| 0.3211 | 8300 | 0.0 | - |
|
328 |
+
| 0.3230 | 8350 | 0.0 | - |
|
329 |
+
| 0.3250 | 8400 | 0.0 | - |
|
330 |
+
| 0.3269 | 8450 | 0.0 | - |
|
331 |
+
| 0.3288 | 8500 | 0.0 | - |
|
332 |
+
| 0.3308 | 8550 | 0.0 | - |
|
333 |
+
| 0.3327 | 8600 | 0.0 | - |
|
334 |
+
| 0.3346 | 8650 | 0.0004 | - |
|
335 |
+
| 0.3366 | 8700 | 0.0 | - |
|
336 |
+
| 0.3385 | 8750 | 0.0 | - |
|
337 |
+
| 0.3405 | 8800 | 0.0 | - |
|
338 |
+
| 0.3424 | 8850 | 0.0 | - |
|
339 |
+
| 0.3443 | 8900 | 0.0 | - |
|
340 |
+
| 0.3463 | 8950 | 0.0 | - |
|
341 |
+
| 0.3482 | 9000 | 0.0 | - |
|
342 |
+
| 0.3501 | 9050 | 0.0 | - |
|
343 |
+
| 0.3521 | 9100 | 0.0001 | - |
|
344 |
+
| 0.3540 | 9150 | 0.0037 | - |
|
345 |
+
| 0.3559 | 9200 | 0.0013 | - |
|
346 |
+
| 0.3579 | 9250 | 0.0007 | - |
|
347 |
+
| 0.3598 | 9300 | 0.0032 | - |
|
348 |
+
| 0.3617 | 9350 | 0.0006 | - |
|
349 |
+
| 0.3637 | 9400 | 0.0007 | - |
|
350 |
+
| 0.3656 | 9450 | 0.0 | - |
|
351 |
+
| 0.3675 | 9500 | 0.0006 | - |
|
352 |
+
| 0.3695 | 9550 | 0.0001 | - |
|
353 |
+
| 0.3714 | 9600 | 0.0004 | - |
|
354 |
+
| 0.3733 | 9650 | 0.0001 | - |
|
355 |
+
| 0.3753 | 9700 | 0.0001 | - |
|
356 |
+
| 0.3772 | 9750 | 0.0 | - |
|
357 |
+
| 0.3791 | 9800 | 0.0 | - |
|
358 |
+
| 0.3811 | 9850 | 0.0 | - |
|
359 |
+
| 0.3830 | 9900 | 0.0 | - |
|
360 |
+
| 0.3849 | 9950 | 0.0 | - |
|
361 |
+
| 0.3869 | 10000 | 0.0 | - |
|
362 |
+
| 0.3888 | 10050 | 0.0 | - |
|
363 |
+
| 0.3907 | 10100 | 0.0 | - |
|
364 |
+
| 0.3927 | 10150 | 0.0 | - |
|
365 |
+
| 0.3946 | 10200 | 0.0 | - |
|
366 |
+
| 0.3965 | 10250 | 0.0 | - |
|
367 |
+
| 0.3985 | 10300 | 0.0 | - |
|
368 |
+
| 0.4004 | 10350 | 0.0 | - |
|
369 |
+
| 0.4024 | 10400 | 0.0 | - |
|
370 |
+
| 0.4043 | 10450 | 0.0 | - |
|
371 |
+
| 0.4062 | 10500 | 0.0 | - |
|
372 |
+
| 0.4082 | 10550 | 0.0 | - |
|
373 |
+
| 0.4101 | 10600 | 0.0 | - |
|
374 |
+
| 0.4120 | 10650 | 0.0 | - |
|
375 |
+
| 0.4140 | 10700 | 0.0 | - |
|
376 |
+
| 0.4159 | 10750 | 0.0 | - |
|
377 |
+
| 0.4178 | 10800 | 0.0 | - |
|
378 |
+
| 0.4198 | 10850 | 0.0 | - |
|
379 |
+
| 0.4217 | 10900 | 0.0001 | - |
|
380 |
+
| 0.4236 | 10950 | 0.0 | - |
|
381 |
+
| 0.4256 | 11000 | 0.0 | - |
|
382 |
+
| 0.4275 | 11050 | 0.0007 | - |
|
383 |
+
| 0.4294 | 11100 | 0.0043 | - |
|
384 |
+
| 0.4314 | 11150 | 0.0011 | - |
|
385 |
+
| 0.4333 | 11200 | 0.0013 | - |
|
386 |
+
| 0.4352 | 11250 | 0.0005 | - |
|
387 |
+
| 0.4372 | 11300 | 0.0004 | - |
|
388 |
+
| 0.4391 | 11350 | 0.0001 | - |
|
389 |
+
| 0.4410 | 11400 | 0.0001 | - |
|
390 |
+
| 0.4430 | 11450 | 0.0 | - |
|
391 |
+
| 0.4449 | 11500 | 0.0001 | - |
|
392 |
+
| 0.4468 | 11550 | 0.0 | - |
|
393 |
+
| 0.4488 | 11600 | 0.0001 | - |
|
394 |
+
| 0.4507 | 11650 | 0.0004 | - |
|
395 |
+
| 0.4526 | 11700 | 0.0001 | - |
|
396 |
+
| 0.4546 | 11750 | 0.0 | - |
|
397 |
+
| 0.4565 | 11800 | 0.0013 | - |
|
398 |
+
| 0.4584 | 11850 | 0.0006 | - |
|
399 |
+
| 0.4604 | 11900 | 0.0001 | - |
|
400 |
+
| 0.4623 | 11950 | 0.0 | - |
|
401 |
+
| 0.4643 | 12000 | 0.0 | - |
|
402 |
+
| 0.4662 | 12050 | 0.0 | - |
|
403 |
+
| 0.4681 | 12100 | 0.0 | - |
|
404 |
+
| 0.4701 | 12150 | 0.0 | - |
|
405 |
+
| 0.4720 | 12200 | 0.0002 | - |
|
406 |
+
| 0.4739 | 12250 | 0.0 | - |
|
407 |
+
| 0.4759 | 12300 | 0.0 | - |
|
408 |
+
| 0.4778 | 12350 | 0.0 | - |
|
409 |
+
| 0.4797 | 12400 | 0.0 | - |
|
410 |
+
| 0.4817 | 12450 | 0.0 | - |
|
411 |
+
| 0.4836 | 12500 | 0.0 | - |
|
412 |
+
| 0.4855 | 12550 | 0.0 | - |
|
413 |
+
| 0.4875 | 12600 | 0.0 | - |
|
414 |
+
| 0.4894 | 12650 | 0.0 | - |
|
415 |
+
| 0.4913 | 12700 | 0.0 | - |
|
416 |
+
| 0.4933 | 12750 | 0.0 | - |
|
417 |
+
| 0.4952 | 12800 | 0.0 | - |
|
418 |
+
| 0.4971 | 12850 | 0.0 | - |
|
419 |
+
| 0.4991 | 12900 | 0.0 | - |
|
420 |
+
| 0.5010 | 12950 | 0.0 | - |
|
421 |
+
| 0.5029 | 13000 | 0.0 | - |
|
422 |
+
| 0.5049 | 13050 | 0.0 | - |
|
423 |
+
| 0.5068 | 13100 | 0.0 | - |
|
424 |
+
| 0.5087 | 13150 | 0.0 | - |
|
425 |
+
| 0.5107 | 13200 | 0.0 | - |
|
426 |
+
| 0.5126 | 13250 | 0.0 | - |
|
427 |
+
| 0.5145 | 13300 | 0.0 | - |
|
428 |
+
| 0.5165 | 13350 | 0.0 | - |
|
429 |
+
| 0.5184 | 13400 | 0.0 | - |
|
430 |
+
| 0.5203 | 13450 | 0.0 | - |
|
431 |
+
| 0.5223 | 13500 | 0.0 | - |
|
432 |
+
| 0.5242 | 13550 | 0.0 | - |
|
433 |
+
| 0.5262 | 13600 | 0.0 | - |
|
434 |
+
| 0.5281 | 13650 | 0.0 | - |
|
435 |
+
| 0.5300 | 13700 | 0.0 | - |
|
436 |
+
| 0.5320 | 13750 | 0.0 | - |
|
437 |
+
| 0.5339 | 13800 | 0.0 | - |
|
438 |
+
| 0.5358 | 13850 | 0.0 | - |
|
439 |
+
| 0.5378 | 13900 | 0.0 | - |
|
440 |
+
| 0.5397 | 13950 | 0.0 | - |
|
441 |
+
| 0.5416 | 14000 | 0.0 | - |
|
442 |
+
| 0.5436 | 14050 | 0.0 | - |
|
443 |
+
| 0.5455 | 14100 | 0.0 | - |
|
444 |
+
| 0.5474 | 14150 | 0.0 | - |
|
445 |
+
| 0.5494 | 14200 | 0.0 | - |
|
446 |
+
| 0.5513 | 14250 | 0.0 | - |
|
447 |
+
| 0.5532 | 14300 | 0.0 | - |
|
448 |
+
| 0.5552 | 14350 | 0.0 | - |
|
449 |
+
| 0.5571 | 14400 | 0.0 | - |
|
450 |
+
| 0.5590 | 14450 | 0.0 | - |
|
451 |
+
| 0.5610 | 14500 | 0.0 | - |
|
452 |
+
| 0.5629 | 14550 | 0.0 | - |
|
453 |
+
| 0.5648 | 14600 | 0.0 | - |
|
454 |
+
| 0.5668 | 14650 | 0.0 | - |
|
455 |
+
| 0.5687 | 14700 | 0.0 | - |
|
456 |
+
| 0.5706 | 14750 | 0.0 | - |
|
457 |
+
| 0.5726 | 14800 | 0.0 | - |
|
458 |
+
| 0.5745 | 14850 | 0.0 | - |
|
459 |
+
| 0.5764 | 14900 | 0.0 | - |
|
460 |
+
| 0.5784 | 14950 | 0.0 | - |
|
461 |
+
| 0.5803 | 15000 | 0.0 | - |
|
462 |
+
| 0.5823 | 15050 | 0.0 | - |
|
463 |
+
| 0.5842 | 15100 | 0.0 | - |
|
464 |
+
| 0.5861 | 15150 | 0.0009 | - |
|
465 |
+
| 0.5881 | 15200 | 0.0006 | - |
|
466 |
+
| 0.5900 | 15250 | 0.0 | - |
|
467 |
+
| 0.5919 | 15300 | 0.0 | - |
|
468 |
+
| 0.5939 | 15350 | 0.0 | - |
|
469 |
+
| 0.5958 | 15400 | 0.0 | - |
|
470 |
+
| 0.5977 | 15450 | 0.0 | - |
|
471 |
+
| 0.5997 | 15500 | 0.0 | - |
|
472 |
+
| 0.6016 | 15550 | 0.0 | - |
|
473 |
+
| 0.6035 | 15600 | 0.0 | - |
|
474 |
+
| 0.6055 | 15650 | 0.0 | - |
|
475 |
+
| 0.6074 | 15700 | 0.0 | - |
|
476 |
+
| 0.6093 | 15750 | 0.0006 | - |
|
477 |
+
| 0.6113 | 15800 | 0.0007 | - |
|
478 |
+
| 0.6132 | 15850 | 0.0 | - |
|
479 |
+
| 0.6151 | 15900 | 0.0 | - |
|
480 |
+
| 0.6171 | 15950 | 0.0 | - |
|
481 |
+
| 0.6190 | 16000 | 0.0 | - |
|
482 |
+
| 0.6209 | 16050 | 0.0 | - |
|
483 |
+
| 0.6229 | 16100 | 0.0 | - |
|
484 |
+
| 0.6248 | 16150 | 0.0 | - |
|
485 |
+
| 0.6267 | 16200 | 0.0 | - |
|
486 |
+
| 0.6287 | 16250 | 0.0 | - |
|
487 |
+
| 0.6306 | 16300 | 0.0 | - |
|
488 |
+
| 0.6325 | 16350 | 0.0 | - |
|
489 |
+
| 0.6345 | 16400 | 0.0 | - |
|
490 |
+
| 0.6364 | 16450 | 0.0 | - |
|
491 |
+
| 0.6383 | 16500 | 0.0 | - |
|
492 |
+
| 0.6403 | 16550 | 0.0 | - |
|
493 |
+
| 0.6422 | 16600 | 0.0 | - |
|
494 |
+
| 0.6442 | 16650 | 0.0 | - |
|
495 |
+
| 0.6461 | 16700 | 0.0 | - |
|
496 |
+
| 0.6480 | 16750 | 0.0 | - |
|
497 |
+
| 0.6500 | 16800 | 0.0 | - |
|
498 |
+
| 0.6519 | 16850 | 0.0 | - |
|
499 |
+
| 0.6538 | 16900 | 0.0 | - |
|
500 |
+
| 0.6558 | 16950 | 0.0 | - |
|
501 |
+
| 0.6577 | 17000 | 0.0 | - |
|
502 |
+
| 0.6596 | 17050 | 0.0 | - |
|
503 |
+
| 0.6616 | 17100 | 0.0 | - |
|
504 |
+
| 0.6635 | 17150 | 0.0 | - |
|
505 |
+
| 0.6654 | 17200 | 0.0 | - |
|
506 |
+
| 0.6674 | 17250 | 0.0 | - |
|
507 |
+
| 0.6693 | 17300 | 0.0 | - |
|
508 |
+
| 0.6712 | 17350 | 0.0 | - |
|
509 |
+
| 0.6732 | 17400 | 0.0 | - |
|
510 |
+
| 0.6751 | 17450 | 0.0 | - |
|
511 |
+
| 0.6770 | 17500 | 0.0 | - |
|
512 |
+
| 0.6790 | 17550 | 0.0 | - |
|
513 |
+
| 0.6809 | 17600 | 0.0 | - |
|
514 |
+
| 0.6828 | 17650 | 0.0 | - |
|
515 |
+
| 0.6848 | 17700 | 0.0 | - |
|
516 |
+
| 0.6867 | 17750 | 0.0 | - |
|
517 |
+
| 0.6886 | 17800 | 0.0 | - |
|
518 |
+
| 0.6906 | 17850 | 0.0 | - |
|
519 |
+
| 0.6925 | 17900 | 0.0 | - |
|
520 |
+
| 0.6944 | 17950 | 0.0 | - |
|
521 |
+
| 0.6964 | 18000 | 0.0 | - |
|
522 |
+
| 0.6983 | 18050 | 0.0007 | - |
|
523 |
+
| 0.7002 | 18100 | 0.0 | - |
|
524 |
+
| 0.7022 | 18150 | 0.0 | - |
|
525 |
+
| 0.7041 | 18200 | 0.0 | - |
|
526 |
+
| 0.7061 | 18250 | 0.0 | - |
|
527 |
+
| 0.7080 | 18300 | 0.0 | - |
|
528 |
+
| 0.7099 | 18350 | 0.0 | - |
|
529 |
+
| 0.7119 | 18400 | 0.0 | - |
|
530 |
+
| 0.7138 | 18450 | 0.0 | - |
|
531 |
+
| 0.7157 | 18500 | 0.0001 | - |
|
532 |
+
| 0.7177 | 18550 | 0.0 | - |
|
533 |
+
| 0.7196 | 18600 | 0.0 | - |
|
534 |
+
| 0.7215 | 18650 | 0.0004 | - |
|
535 |
+
| 0.7235 | 18700 | 0.0 | - |
|
536 |
+
| 0.7254 | 18750 | 0.0 | - |
|
537 |
+
| 0.7273 | 18800 | 0.0 | - |
|
538 |
+
| 0.7293 | 18850 | 0.0 | - |
|
539 |
+
| 0.7312 | 18900 | 0.0 | - |
|
540 |
+
| 0.7331 | 18950 | 0.0 | - |
|
541 |
+
| 0.7351 | 19000 | 0.0 | - |
|
542 |
+
| 0.7370 | 19050 | 0.0 | - |
|
543 |
+
| 0.7389 | 19100 | 0.0 | - |
|
544 |
+
| 0.7409 | 19150 | 0.0 | - |
|
545 |
+
| 0.7428 | 19200 | 0.0 | - |
|
546 |
+
| 0.7447 | 19250 | 0.0 | - |
|
547 |
+
| 0.7467 | 19300 | 0.0 | - |
|
548 |
+
| 0.7486 | 19350 | 0.0 | - |
|
549 |
+
| 0.7505 | 19400 | 0.0 | - |
|
550 |
+
| 0.7525 | 19450 | 0.0 | - |
|
551 |
+
| 0.7544 | 19500 | 0.0 | - |
|
552 |
+
| 0.7563 | 19550 | 0.0 | - |
|
553 |
+
| 0.7583 | 19600 | 0.0 | - |
|
554 |
+
| 0.7602 | 19650 | 0.0 | - |
|
555 |
+
| 0.7621 | 19700 | 0.0 | - |
|
556 |
+
| 0.7641 | 19750 | 0.0 | - |
|
557 |
+
| 0.7660 | 19800 | 0.0 | - |
|
558 |
+
| 0.7680 | 19850 | 0.0 | - |
|
559 |
+
| 0.7699 | 19900 | 0.0 | - |
|
560 |
+
| 0.7718 | 19950 | 0.0 | - |
|
561 |
+
| 0.7738 | 20000 | 0.0 | - |
|
562 |
+
| 0.7757 | 20050 | 0.0 | - |
|
563 |
+
| 0.7776 | 20100 | 0.0 | - |
|
564 |
+
| 0.7796 | 20150 | 0.0 | - |
|
565 |
+
| 0.7815 | 20200 | 0.0 | - |
|
566 |
+
| 0.7834 | 20250 | 0.0 | - |
|
567 |
+
| 0.7854 | 20300 | 0.0 | - |
|
568 |
+
| 0.7873 | 20350 | 0.0 | - |
|
569 |
+
| 0.7892 | 20400 | 0.0 | - |
|
570 |
+
| 0.7912 | 20450 | 0.0 | - |
|
571 |
+
| 0.7931 | 20500 | 0.0 | - |
|
572 |
+
| 0.7950 | 20550 | 0.0 | - |
|
573 |
+
| 0.7970 | 20600 | 0.0 | - |
|
574 |
+
| 0.7989 | 20650 | 0.0 | - |
|
575 |
+
| 0.8008 | 20700 | 0.0 | - |
|
576 |
+
| 0.8028 | 20750 | 0.0 | - |
|
577 |
+
| 0.8047 | 20800 | 0.0 | - |
|
578 |
+
| 0.8066 | 20850 | 0.0 | - |
|
579 |
+
| 0.8086 | 20900 | 0.0 | - |
|
580 |
+
| 0.8105 | 20950 | 0.0 | - |
|
581 |
+
| 0.8124 | 21000 | 0.0 | - |
|
582 |
+
| 0.8144 | 21050 | 0.0 | - |
|
583 |
+
| 0.8163 | 21100 | 0.0 | - |
|
584 |
+
| 0.8182 | 21150 | 0.0 | - |
|
585 |
+
| 0.8202 | 21200 | 0.0 | - |
|
586 |
+
| 0.8221 | 21250 | 0.0 | - |
|
587 |
+
| 0.8240 | 21300 | 0.0 | - |
|
588 |
+
| 0.8260 | 21350 | 0.0 | - |
|
589 |
+
| 0.8279 | 21400 | 0.0 | - |
|
590 |
+
| 0.8299 | 21450 | 0.0 | - |
|
591 |
+
| 0.8318 | 21500 | 0.0 | - |
|
592 |
+
| 0.8337 | 21550 | 0.0 | - |
|
593 |
+
| 0.8357 | 21600 | 0.0 | - |
|
594 |
+
| 0.8376 | 21650 | 0.0 | - |
|
595 |
+
| 0.8395 | 21700 | 0.0 | - |
|
596 |
+
| 0.8415 | 21750 | 0.0 | - |
|
597 |
+
| 0.8434 | 21800 | 0.0 | - |
|
598 |
+
| 0.8453 | 21850 | 0.0 | - |
|
599 |
+
| 0.8473 | 21900 | 0.0 | - |
|
600 |
+
| 0.8492 | 21950 | 0.0 | - |
|
601 |
+
| 0.8511 | 22000 | 0.0 | - |
|
602 |
+
| 0.8531 | 22050 | 0.0 | - |
|
603 |
+
| 0.8550 | 22100 | 0.0 | - |
|
604 |
+
| 0.8569 | 22150 | 0.0 | - |
|
605 |
+
| 0.8589 | 22200 | 0.0 | - |
|
606 |
+
| 0.8608 | 22250 | 0.0 | - |
|
607 |
+
| 0.8627 | 22300 | 0.0 | - |
|
608 |
+
| 0.8647 | 22350 | 0.0 | - |
|
609 |
+
| 0.8666 | 22400 | 0.0 | - |
|
610 |
+
| 0.8685 | 22450 | 0.0 | - |
|
611 |
+
| 0.8705 | 22500 | 0.0 | - |
|
612 |
+
| 0.8724 | 22550 | 0.0 | - |
|
613 |
+
| 0.8743 | 22600 | 0.0 | - |
|
614 |
+
| 0.8763 | 22650 | 0.0 | - |
|
615 |
+
| 0.8782 | 22700 | 0.0 | - |
|
616 |
+
| 0.8801 | 22750 | 0.0 | - |
|
617 |
+
| 0.8821 | 22800 | 0.0 | - |
|
618 |
+
| 0.8840 | 22850 | 0.0 | - |
|
619 |
+
| 0.8859 | 22900 | 0.0 | - |
|
620 |
+
| 0.8879 | 22950 | 0.0 | - |
|
621 |
+
| 0.8898 | 23000 | 0.0 | - |
|
622 |
+
| 0.8918 | 23050 | 0.0 | - |
|
623 |
+
| 0.8937 | 23100 | 0.0 | - |
|
624 |
+
| 0.8956 | 23150 | 0.0 | - |
|
625 |
+
| 0.8976 | 23200 | 0.0 | - |
|
626 |
+
| 0.8995 | 23250 | 0.0 | - |
|
627 |
+
| 0.9014 | 23300 | 0.0 | - |
|
628 |
+
| 0.9034 | 23350 | 0.0 | - |
|
629 |
+
| 0.9053 | 23400 | 0.0 | - |
|
630 |
+
| 0.9072 | 23450 | 0.0 | - |
|
631 |
+
| 0.9092 | 23500 | 0.0 | - |
|
632 |
+
| 0.9111 | 23550 | 0.0 | - |
|
633 |
+
| 0.9130 | 23600 | 0.0 | - |
|
634 |
+
| 0.9150 | 23650 | 0.0 | - |
|
635 |
+
| 0.9169 | 23700 | 0.0 | - |
|
636 |
+
| 0.9188 | 23750 | 0.0 | - |
|
637 |
+
| 0.9208 | 23800 | 0.0 | - |
|
638 |
+
| 0.9227 | 23850 | 0.0 | - |
|
639 |
+
| 0.9246 | 23900 | 0.0 | - |
|
640 |
+
| 0.9266 | 23950 | 0.0 | - |
|
641 |
+
| 0.9285 | 24000 | 0.0 | - |
|
642 |
+
| 0.9304 | 24050 | 0.0 | - |
|
643 |
+
| 0.9324 | 24100 | 0.0 | - |
|
644 |
+
| 0.9343 | 24150 | 0.0 | - |
|
645 |
+
| 0.9362 | 24200 | 0.0 | - |
|
646 |
+
| 0.9382 | 24250 | 0.0 | - |
|
647 |
+
| 0.9401 | 24300 | 0.0 | - |
|
648 |
+
| 0.9420 | 24350 | 0.0 | - |
|
649 |
+
| 0.9440 | 24400 | 0.0 | - |
|
650 |
+
| 0.9459 | 24450 | 0.0 | - |
|
651 |
+
| 0.9478 | 24500 | 0.0 | - |
|
652 |
+
| 0.9498 | 24550 | 0.0 | - |
|
653 |
+
| 0.9517 | 24600 | 0.0 | - |
|
654 |
+
| 0.9537 | 24650 | 0.0 | - |
|
655 |
+
| 0.9556 | 24700 | 0.0 | - |
|
656 |
+
| 0.9575 | 24750 | 0.0 | - |
|
657 |
+
| 0.9595 | 24800 | 0.0 | - |
|
658 |
+
| 0.9614 | 24850 | 0.0 | - |
|
659 |
+
| 0.9633 | 24900 | 0.0 | - |
|
660 |
+
| 0.9653 | 24950 | 0.0 | - |
|
661 |
+
| 0.9672 | 25000 | 0.0 | - |
|
662 |
+
| 0.9691 | 25050 | 0.0 | - |
|
663 |
+
| 0.9711 | 25100 | 0.0 | - |
|
664 |
+
| 0.9730 | 25150 | 0.0 | - |
|
665 |
+
| 0.9749 | 25200 | 0.0 | - |
|
666 |
+
| 0.9769 | 25250 | 0.0 | - |
|
667 |
+
| 0.9788 | 25300 | 0.0 | - |
|
668 |
+
| 0.9807 | 25350 | 0.0 | - |
|
669 |
+
| 0.9827 | 25400 | 0.0 | - |
|
670 |
+
| 0.9846 | 25450 | 0.0 | - |
|
671 |
+
| 0.9865 | 25500 | 0.0 | - |
|
672 |
+
| 0.9885 | 25550 | 0.0 | - |
|
673 |
+
| 0.9904 | 25600 | 0.0 | - |
|
674 |
+
| 0.9923 | 25650 | 0.0 | - |
|
675 |
+
| 0.9943 | 25700 | 0.0 | - |
|
676 |
+
| 0.9962 | 25750 | 0.0 | - |
|
677 |
+
| 0.9981 | 25800 | 0.0 | - |
|
678 |
+
|
679 |
+
### Framework Versions
|
680 |
+
- Python: 3.10.12
|
681 |
+
- SetFit: 1.1.0
|
682 |
+
- Sentence Transformers: 3.3.1
|
683 |
+
- Transformers: 4.42.2
|
684 |
+
- PyTorch: 2.5.1+cu121
|
685 |
+
- Datasets: 3.2.0
|
686 |
+
- Tokenizers: 0.19.1
|
687 |
+
|
688 |
+
## Citation
|
689 |
+
|
690 |
+
### BibTeX
|
691 |
+
```bibtex
|
692 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
693 |
+
doi = {10.48550/ARXIV.2209.11055},
|
694 |
+
url = {https://arxiv.org/abs/2209.11055},
|
695 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
696 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
697 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
698 |
+
publisher = {arXiv},
|
699 |
+
year = {2022},
|
700 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
701 |
+
}
|
702 |
+
```
|
703 |
+
|
704 |
+
<!--
|
705 |
+
## Glossary
|
706 |
+
|
707 |
+
*Clearly define terms in order to be accessible across audiences.*
|
708 |
+
-->
|
709 |
+
|
710 |
+
<!--
|
711 |
+
## Model Card Authors
|
712 |
+
|
713 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
714 |
+
-->
|
715 |
+
|
716 |
+
<!--
|
717 |
+
## Model Card Contact
|
718 |
+
|
719 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
720 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.42.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.42.2",
|
5 |
+
"pytorch": "2.5.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"neutral",
|
4 |
+
"opposed",
|
5 |
+
"supportive"
|
6 |
+
],
|
7 |
+
"normalize_embeddings": false
|
8 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:238c09c03d7e61aeeb460d05297ae66617b45df4baf5e2c77898c499f21181f7
|
3 |
+
size 90864192
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:56d477543e1b21c92feccd455c777fceb20ebb5efc6d7234c6b17c87b093c5b2
|
3 |
+
size 10207
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 256,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|