cbpuschmann commited on
Commit
0c7d72b
·
verified ·
1 Parent(s): b282347

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung
9
+ eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem
10
+ fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten,
11
+ wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der
12
+ Bundesregierung anerkannt und in der Politik umgesetzt werden.
13
+ - text: Die aktivist bezeichnen sich als ›DLG›. Sie fordern von Bundeswirtschaftsminister
14
+ Robert Habeck Grüne, auf fossile Energie zu verzichten. Zudem verlangen sie eine
15
+ Lebenserklärung der Rektorin der Leipziger Universität. Diese soll sich ›offiziell,
16
+ öffentlich und gerichtet an Robert Habeck gegen den Bau und die Finanzierung neuer
17
+ fossiler Infrastruktur aussprechen. Insbesondere gegen neue Ölbohrungen in der
18
+ Nordsee sowie neue Flüssiggas-Terminals›, hieß es in einer Mitteilung der Gruppe
19
+ am Donnerstag.
20
+ - text: Am Montag war es erneut das Amtsgericht Tiergarten, in dem ein Anwalt die
21
+ Aktionen der ›DLG› mit einem fragwürdigen historischen Vergleich rechtfertigte.
22
+ Verhandelt wurde an dem Tag gegen den 63-jährigen Winfried L. Wegen fünf Straßenblockaden,
23
+ bei denen er teilweise seine Hand auf der Straße angeklebt hatte, musste sich
24
+ L. wegen der Vorwürfe Nötigung und Widerstand gegen Vollstreckungsbeamte verantworten.
25
+ - text: 'In einer am Morgen verbreiteten Mitteilung begründete die Gruppe ihre Aktion.
26
+ Mit der Sitzblockade habe der "fossile Alltag" auf der Straße unterbrochen werden
27
+ sollen. Auf Transparenten seien Forderungen deutlich gemacht worden: ein 9-Euro-Ticket
28
+ für alle, ein Tempolimit von 100 Stundenkilometern auf Autobahnen und die Bildung
29
+ eines Gesellschaftsrats zum Thema Ende der fossilen Brennstoffe bis 2030.'
30
+ - text: 'aktivist feiern Festival für mehr Klimaschutz Xanten wer Die Ortsgruppe Xanten
31
+ von FFF hat am Freitagnachmittag wieder für mehr Klimaschutz protestiert – aber
32
+ anders als sonst. Die aktivist organisierten an der Kriemhildmühle im Kurpark
33
+ ein Festival mit Musik, Essen, Getränken und Vorträgen. Viele Menschen kamen,
34
+ genossen das schöne Wetter und die entspannte Atmosphäre, lauschten den Liedern
35
+ und sangen mit. Ansprachen gab es auch: Seit Jahrzehnten warne die Wissenschaft
36
+ vor den Folgen des Klimawandels, trotzdem unternehme die Politik zu wenig, und
37
+ die Bevölkerung müsse unter den Folgen wie Dürren, Überschwemmungen und Hitze
38
+ leiden, kritisierte Frederik Krohn von der Xantener Ortsgruppe der Klimaschutzbewegung.
39
+ Deshalb gehe FFF immer wieder auf die Straße, um der Politik zu sagen, dass es
40
+ so nicht weitergehe. Die große Teilnahme am Festival in Xanten und damit am Klimaschutz-Protest
41
+ sei ein ›starkes Zeichen›, sagte Krohn.'
42
+ metrics:
43
+ - accuracy
44
+ pipeline_tag: text-classification
45
+ library_name: setfit
46
+ inference: true
47
+ base_model: deutsche-telekom/gbert-large-paraphrase-cosine
48
+ ---
49
+
50
+ # SetFit with deutsche-telekom/gbert-large-paraphrase-cosine
51
+
52
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
53
+
54
+ The model has been trained using an efficient few-shot learning technique that involves:
55
+
56
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
57
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
58
+
59
+ ## Model Details
60
+
61
+ ### Model Description
62
+ - **Model Type:** SetFit
63
+ - **Sentence Transformer body:** [deutsche-telekom/gbert-large-paraphrase-cosine](https://huggingface.co/deutsche-telekom/gbert-large-paraphrase-cosine)
64
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
65
+ - **Maximum Sequence Length:** 512 tokens
66
+ - **Number of Classes:** 3 classes
67
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
68
+ <!-- - **Language:** Unknown -->
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
74
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
75
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
76
+
77
+ ### Model Labels
78
+ | Label | Examples |
79
+ |:-----------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
80
+ | neutral | <ul><li>'Heizungsgesetz: Dialog zwischen Ministerien zur Förderung von Wärmepumpen\n\nIn einer gemeinsamen Erklärung haben das Bundeswirtschaftsministerium und das zuständige Klimaministerium ihren Dialog über die flächendeckende Einführung von Wärmepumpen fortgesetzt. Ziel ist es, einen Konsens zu finden, der den Übergang zu nachhaltigeren Heizsystemen vorantreibt. Die Initiativen zielen darauf ab, die Energieeffizienz zu steigern und den Klimaschutz zu fördern, ohne spezifische Details oder Zeitpläne zu nennen.'</li><li>'Die Einführung eines Heizungsgesetzes zur Förderung der Wärmepumpen-Nutzung ist ein viel diskutierter Schritt hin zu mehr Nachhaltigkeit im Wohnungsbau. Kritiker argumentieren jedoch, dass finanzielle Hürden für den Austausch älterer Heizsysteme bestehende Haushalte belasten könnten. Vergleichsportale für Heizöl zeigen aktuell große Preisunterschiede, was die Kosten für Verbraucher weiter ins Fokus rückt.'</li><li>'Die Ampel-Koalition diskutiert über eine flächendeckende Einführung von Wärmepumpen, bekannt als "Heizungsgesetz". Ein genauer Zeitplan ist noch unklar, da derzeit Verhandlungen zwischen den Fraktionen laufen. Die Initiative zielt darauf ab, die Energieeffizienz zu steigern und den Übergang zu erneuerbaren Energien im Heizsektor voranzutreiben.'</li></ul> |
81
+ | opposed | <ul><li>'Skeptische Reaktionen auf Heizungsgesetz: Kritiker sehen Nachbesserung als unzureichend\n\nDer Vorschlag zur flächendeckenden Einführung von Wärmepumpen stößt auf geteilte Meinungen. Während Befürworter die Energiewende vorantreiben wollen, zeigt sich Michael Kruse (FDP) skeptisch und spricht von einer "Nachbesserung durch die Hintertür". Er fordert eine umfassendere Überarbeitung des Gesetzes, um die Belange der Verbraucher und Wirtschaft besser zu berücksichtigen.'</li><li>'Skepsis gegenüber "Heizungsgesetz": Kritiker warnen vor zu schnellem Umstritt\n\nDer geplante Einsatz von Wärmepumpen als alternative Heizungslösung weckt gemischte Gefühle. FDP-Politiker Sami Musa kritisiert den Vorstoß scharf und warnt vor unerwünschten Konsequenzen. "Das Heizungsgesetz könnte am Ende zu einem teuren und umweltschädlichen Kraftakt führen", so Musa. Er bezieht sich auf mögliche finanzielle Belastungen für Hausbesitzer und die Frage, ob ein vollständiger Wechsel von Öl- und Gasheizungen tatsächlich nachhaltig ist.'</li><li>'Skeptische Reaktionen auf das Heizungsgesetz: Unternehmer sehen dunkle Zeiten kommen\n\nIn der deutschen Energiebranche wächst die Skepsis gegenüber den jüngsten Gesetzesinitiativen zur flächendeckenden Einführung von Wärmepumpen. Ein betroffener Unternehmer warnt vor den Folgen: "Das Heizungsgesetz und die aktuelle Förderpolitik könnten zu Werkschließungen und Entlassungen führen, besonders in Zeiten wirtschaftlicher Unsicherheit." Er kritisiert das Chaos und die widersprüchlichen Signale aus Berlin, die seiner Meinung nach Unternehmen in eine schwierige Lage bringen.'</li></ul> |
82
+ | supportive | <ul><li>'Die Ampelkoalition hat kurz vor den Sommerferien einen Durchbruch bei der Wärmepumpenpflicht erzielt. Das Heizungsgesetz soll Klimaschutz und soziale Verträglichkeit verbinden, wie SPD-Vizefraktionschefin Verena Hubertz betont. Dennoch bleibt ein bitterer Nachgeschmack: Die zähe Debatte zeigt die Herausforderungen einer koalitionären Einigung.'</li><li>'Obwohl die flächendeckende Einführung von Wärmepumpen durch das geplante "Heizungsgesetz" auf ein dringend nötiges Umdenken hinweist, weckt die Initiative gemischte Gefühle. Während SPD-Verhandler Matthias Miersch von einer Förderung klimafreundlicher Heizungstechnologien spricht, warnen Kritiker vor einer möglichen Belastung für Verbraucher und Mittelstand durch höhere Installationskosten. Ein ausgewogener Ansatz ist entscheidend, um eine effektive Energiewende zu gewährleisten.'</li><li>'Obwohl das geplante "Heizungsgesetz" auf gemischte Reaktionen stößt, ist es ein mutiger Schritt in Richtung Energiewende. Kritiker monieren mögliche finanzielle Belastungen für Hausbesitzer, doch Grünen-Fraktionsvorsitzende Katharina Dröge betont die langfristigen Vorteile für den Klimaschutz und die Energieunabhängigkeit. Der Entwurf zielt darauf ab, die Installation von Wärmepumpen zu fördern und könnte Deutschland bei der Sanierung seiner Gebäudeflotte voranbringen.'</li></ul> |
83
+
84
+ ## Uses
85
+
86
+ ### Direct Use for Inference
87
+
88
+ First install the SetFit library:
89
+
90
+ ```bash
91
+ pip install setfit
92
+ ```
93
+
94
+ Then you can load this model and run inference.
95
+
96
+ ```python
97
+ from setfit import SetFitModel
98
+
99
+ # Download from the 🤗 Hub
100
+ model = SetFitModel.from_pretrained("cbpuschmann/klimacoder2_v0.4")
101
+ # Run inference
102
+ preds = model("Die Forderungen sind landesweit die gleichen. Es geht um die Wiedereinführung eines 9-Euro-Tickets und ein Tempolimit von 100 km/h auf den Autobahnen. Außerdem fordern wir die Einführung eines Gesellschaftsrats. Dieser soll Maßnahmen erarbeiten, wie Deutschland bis 2030 emissionsfrei wird. Die Lösungsansätze sollen von der Bundesregierung anerkannt und in der Politik umgesetzt werden.")
103
+ ```
104
+
105
+ <!--
106
+ ### Downstream Use
107
+
108
+ *List how someone could finetune this model on their own dataset.*
109
+ -->
110
+
111
+ <!--
112
+ ### Out-of-Scope Use
113
+
114
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
115
+ -->
116
+
117
+ <!--
118
+ ## Bias, Risks and Limitations
119
+
120
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
121
+ -->
122
+
123
+ <!--
124
+ ### Recommendations
125
+
126
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
127
+ -->
128
+
129
+ ## Training Details
130
+
131
+ ### Training Set Metrics
132
+ | Training set | Min | Median | Max |
133
+ |:-------------|:----|:--------|:----|
134
+ | Word count | 24 | 61.6794 | 191 |
135
+
136
+ | Label | Training Sample Count |
137
+ |:-----------|:----------------------|
138
+ | supportive | 210 |
139
+ | opposed | 210 |
140
+ | neutral | 210 |
141
+
142
+ ### Training Hyperparameters
143
+ - batch_size: (8, 8)
144
+ - num_epochs: (3, 3)
145
+ - max_steps: -1
146
+ - sampling_strategy: oversampling
147
+ - body_learning_rate: (2e-05, 1e-05)
148
+ - head_learning_rate: 0.01
149
+ - loss: CosineSimilarityLoss
150
+ - distance_metric: cosine_distance
151
+ - margin: 0.25
152
+ - end_to_end: False
153
+ - use_amp: False
154
+ - warmup_proportion: 0.1
155
+ - l2_weight: 0.01
156
+ - seed: 42
157
+ - eval_max_steps: -1
158
+ - load_best_model_at_end: True
159
+
160
+ ### Training Results
161
+ | Epoch | Step | Training Loss | Validation Loss |
162
+ |:------:|:-----:|:-------------:|:---------------:|
163
+ | 0.0001 | 1 | 0.2556 | - |
164
+ | 0.0060 | 50 | 0.2575 | - |
165
+ | 0.0121 | 100 | 0.2404 | - |
166
+ | 0.0181 | 150 | 0.2165 | - |
167
+ | 0.0242 | 200 | 0.1432 | - |
168
+ | 0.0302 | 250 | 0.0634 | - |
169
+ | 0.0363 | 300 | 0.0156 | - |
170
+ | 0.0423 | 350 | 0.004 | - |
171
+ | 0.0484 | 400 | 0.001 | - |
172
+ | 0.0544 | 450 | 0.0005 | - |
173
+ | 0.0605 | 500 | 0.0004 | - |
174
+ | 0.0665 | 550 | 0.0003 | - |
175
+ | 0.0726 | 600 | 0.0002 | - |
176
+ | 0.0786 | 650 | 0.0002 | - |
177
+ | 0.0847 | 700 | 0.0001 | - |
178
+ | 0.0907 | 750 | 0.0012 | - |
179
+ | 0.0967 | 800 | 0.0024 | - |
180
+ | 0.1028 | 850 | 0.0018 | - |
181
+ | 0.1088 | 900 | 0.0001 | - |
182
+ | 0.1149 | 950 | 0.0001 | - |
183
+ | 0.1209 | 1000 | 0.0001 | - |
184
+ | 0.1270 | 1050 | 0.0001 | - |
185
+ | 0.1330 | 1100 | 0.0001 | - |
186
+ | 0.1391 | 1150 | 0.0 | - |
187
+ | 0.1451 | 1200 | 0.0 | - |
188
+ | 0.1512 | 1250 | 0.0 | - |
189
+ | 0.1572 | 1300 | 0.0 | - |
190
+ | 0.1633 | 1350 | 0.0 | - |
191
+ | 0.1693 | 1400 | 0.0 | - |
192
+ | 0.1754 | 1450 | 0.0 | - |
193
+ | 0.1814 | 1500 | 0.0 | - |
194
+ | 0.1874 | 1550 | 0.0 | - |
195
+ | 0.1935 | 1600 | 0.0 | - |
196
+ | 0.1995 | 1650 | 0.0 | - |
197
+ | 0.2056 | 1700 | 0.0 | - |
198
+ | 0.2116 | 1750 | 0.0 | - |
199
+ | 0.2177 | 1800 | 0.0 | - |
200
+ | 0.2237 | 1850 | 0.0 | - |
201
+ | 0.2298 | 1900 | 0.0 | - |
202
+ | 0.2358 | 1950 | 0.0 | - |
203
+ | 0.2419 | 2000 | 0.0 | - |
204
+ | 0.2479 | 2050 | 0.0 | - |
205
+ | 0.2540 | 2100 | 0.0 | - |
206
+ | 0.2600 | 2150 | 0.0 | - |
207
+ | 0.2661 | 2200 | 0.0 | - |
208
+ | 0.2721 | 2250 | 0.0 | - |
209
+ | 0.2781 | 2300 | 0.0 | - |
210
+ | 0.2842 | 2350 | 0.0 | - |
211
+ | 0.2902 | 2400 | 0.0 | - |
212
+ | 0.2963 | 2450 | 0.0 | - |
213
+ | 0.3023 | 2500 | 0.0 | - |
214
+ | 0.3084 | 2550 | 0.0 | - |
215
+ | 0.3144 | 2600 | 0.0 | - |
216
+ | 0.3205 | 2650 | 0.0 | - |
217
+ | 0.3265 | 2700 | 0.0 | - |
218
+ | 0.3326 | 2750 | 0.0 | - |
219
+ | 0.3386 | 2800 | 0.0 | - |
220
+ | 0.3447 | 2850 | 0.0 | - |
221
+ | 0.3507 | 2900 | 0.0 | - |
222
+ | 0.3568 | 2950 | 0.0 | - |
223
+ | 0.3628 | 3000 | 0.0 | - |
224
+ | 0.3688 | 3050 | 0.0 | - |
225
+ | 0.3749 | 3100 | 0.0 | - |
226
+ | 0.3809 | 3150 | 0.0 | - |
227
+ | 0.3870 | 3200 | 0.0 | - |
228
+ | 0.3930 | 3250 | 0.0 | - |
229
+ | 0.3991 | 3300 | 0.0 | - |
230
+ | 0.4051 | 3350 | 0.0 | - |
231
+ | 0.4112 | 3400 | 0.0 | - |
232
+ | 0.4172 | 3450 | 0.0 | - |
233
+ | 0.4233 | 3500 | 0.0 | - |
234
+ | 0.4293 | 3550 | 0.0 | - |
235
+ | 0.4354 | 3600 | 0.0 | - |
236
+ | 0.4414 | 3650 | 0.0 | - |
237
+ | 0.4475 | 3700 | 0.0 | - |
238
+ | 0.4535 | 3750 | 0.0 | - |
239
+ | 0.4595 | 3800 | 0.0 | - |
240
+ | 0.4656 | 3850 | 0.0 | - |
241
+ | 0.4716 | 3900 | 0.0 | - |
242
+ | 0.4777 | 3950 | 0.0 | - |
243
+ | 0.4837 | 4000 | 0.0 | - |
244
+ | 0.4898 | 4050 | 0.0 | - |
245
+ | 0.4958 | 4100 | 0.0 | - |
246
+ | 0.5019 | 4150 | 0.0 | - |
247
+ | 0.5079 | 4200 | 0.0 | - |
248
+ | 0.5140 | 4250 | 0.0 | - |
249
+ | 0.5200 | 4300 | 0.0 | - |
250
+ | 0.5261 | 4350 | 0.0 | - |
251
+ | 0.5321 | 4400 | 0.0 | - |
252
+ | 0.5382 | 4450 | 0.0 | - |
253
+ | 0.5442 | 4500 | 0.0 | - |
254
+ | 0.5502 | 4550 | 0.0187 | - |
255
+ | 0.5563 | 4600 | 0.1473 | - |
256
+ | 0.5623 | 4650 | 0.1667 | - |
257
+ | 0.5684 | 4700 | 0.0401 | - |
258
+ | 0.5744 | 4750 | 0.0112 | - |
259
+ | 0.5805 | 4800 | 0.0074 | - |
260
+ | 0.5865 | 4850 | 0.0021 | - |
261
+ | 0.5926 | 4900 | 0.0017 | - |
262
+ | 0.5986 | 4950 | 0.0 | - |
263
+ | 0.6047 | 5000 | 0.0 | - |
264
+ | 0.6107 | 5050 | 0.0 | - |
265
+ | 0.6168 | 5100 | 0.0 | - |
266
+ | 0.6228 | 5150 | 0.0 | - |
267
+ | 0.6289 | 5200 | 0.0 | - |
268
+ | 0.6349 | 5250 | 0.0 | - |
269
+ | 0.6409 | 5300 | 0.0 | - |
270
+ | 0.6470 | 5350 | 0.0 | - |
271
+ | 0.6530 | 5400 | 0.0 | - |
272
+ | 0.6591 | 5450 | 0.0 | - |
273
+ | 0.6651 | 5500 | 0.0 | - |
274
+ | 0.6712 | 5550 | 0.0 | - |
275
+ | 0.6772 | 5600 | 0.0 | - |
276
+ | 0.6833 | 5650 | 0.0 | - |
277
+ | 0.6893 | 5700 | 0.0 | - |
278
+ | 0.6954 | 5750 | 0.0 | - |
279
+ | 0.7014 | 5800 | 0.0 | - |
280
+ | 0.7075 | 5850 | 0.0 | - |
281
+ | 0.7135 | 5900 | 0.0 | - |
282
+ | 0.7196 | 5950 | 0.0 | - |
283
+ | 0.7256 | 6000 | 0.0 | - |
284
+ | 0.7316 | 6050 | 0.0 | - |
285
+ | 0.7377 | 6100 | 0.0 | - |
286
+ | 0.7437 | 6150 | 0.0 | - |
287
+ | 0.7498 | 6200 | 0.0 | - |
288
+ | 0.7558 | 6250 | 0.0 | - |
289
+ | 0.7619 | 6300 | 0.0 | - |
290
+ | 0.7679 | 6350 | 0.0 | - |
291
+ | 0.7740 | 6400 | 0.0 | - |
292
+ | 0.7800 | 6450 | 0.0 | - |
293
+ | 0.7861 | 6500 | 0.0 | - |
294
+ | 0.7921 | 6550 | 0.0 | - |
295
+ | 0.7982 | 6600 | 0.0 | - |
296
+ | 0.8042 | 6650 | 0.0 | - |
297
+ | 0.8103 | 6700 | 0.0 | - |
298
+ | 0.8163 | 6750 | 0.0 | - |
299
+ | 0.8223 | 6800 | 0.0 | - |
300
+ | 0.8284 | 6850 | 0.0 | - |
301
+ | 0.8344 | 6900 | 0.0 | - |
302
+ | 0.8405 | 6950 | 0.0 | - |
303
+ | 0.8465 | 7000 | 0.0 | - |
304
+ | 0.8526 | 7050 | 0.0 | - |
305
+ | 0.8586 | 7100 | 0.0 | - |
306
+ | 0.8647 | 7150 | 0.0 | - |
307
+ | 0.8707 | 7200 | 0.0 | - |
308
+ | 0.8768 | 7250 | 0.0 | - |
309
+ | 0.8828 | 7300 | 0.0 | - |
310
+ | 0.8889 | 7350 | 0.0 | - |
311
+ | 0.8949 | 7400 | 0.0 | - |
312
+ | 0.9010 | 7450 | 0.0 | - |
313
+ | 0.9070 | 7500 | 0.0 | - |
314
+ | 0.9130 | 7550 | 0.0 | - |
315
+ | 0.9191 | 7600 | 0.0 | - |
316
+ | 0.9251 | 7650 | 0.0 | - |
317
+ | 0.9312 | 7700 | 0.0 | - |
318
+ | 0.9372 | 7750 | 0.0 | - |
319
+ | 0.9433 | 7800 | 0.0 | - |
320
+ | 0.9493 | 7850 | 0.0 | - |
321
+ | 0.9554 | 7900 | 0.0 | - |
322
+ | 0.9614 | 7950 | 0.0 | - |
323
+ | 0.9675 | 8000 | 0.0 | - |
324
+ | 0.9735 | 8050 | 0.0 | - |
325
+ | 0.9796 | 8100 | 0.0 | - |
326
+ | 0.9856 | 8150 | 0.0 | - |
327
+ | 0.9917 | 8200 | 0.0 | - |
328
+ | 0.9977 | 8250 | 0.0 | - |
329
+ | 1.0 | 8269 | - | 0.3465 |
330
+ | 1.0037 | 8300 | 0.0 | - |
331
+ | 1.0098 | 8350 | 0.0 | - |
332
+ | 1.0158 | 8400 | 0.0 | - |
333
+ | 1.0219 | 8450 | 0.0 | - |
334
+ | 1.0279 | 8500 | 0.0 | - |
335
+ | 1.0340 | 8550 | 0.0 | - |
336
+ | 1.0400 | 8600 | 0.0 | - |
337
+ | 1.0461 | 8650 | 0.0 | - |
338
+ | 1.0521 | 8700 | 0.0 | - |
339
+ | 1.0582 | 8750 | 0.0 | - |
340
+ | 1.0642 | 8800 | 0.0 | - |
341
+ | 1.0703 | 8850 | 0.0 | - |
342
+ | 1.0763 | 8900 | 0.0 | - |
343
+ | 1.0824 | 8950 | 0.0 | - |
344
+ | 1.0884 | 9000 | 0.0 | - |
345
+ | 1.0944 | 9050 | 0.0 | - |
346
+ | 1.1005 | 9100 | 0.0 | - |
347
+ | 1.1065 | 9150 | 0.0 | - |
348
+ | 1.1126 | 9200 | 0.0 | - |
349
+ | 1.1186 | 9250 | 0.0 | - |
350
+ | 1.1247 | 9300 | 0.0 | - |
351
+ | 1.1307 | 9350 | 0.0 | - |
352
+ | 1.1368 | 9400 | 0.0 | - |
353
+ | 1.1428 | 9450 | 0.0 | - |
354
+ | 1.1489 | 9500 | 0.0 | - |
355
+ | 1.1549 | 9550 | 0.0 | - |
356
+ | 1.1610 | 9600 | 0.0 | - |
357
+ | 1.1670 | 9650 | 0.0 | - |
358
+ | 1.1731 | 9700 | 0.0 | - |
359
+ | 1.1791 | 9750 | 0.0 | - |
360
+ | 1.1851 | 9800 | 0.0 | - |
361
+ | 1.1912 | 9850 | 0.0 | - |
362
+ | 1.1972 | 9900 | 0.0 | - |
363
+ | 1.2033 | 9950 | 0.0 | - |
364
+ | 1.2093 | 10000 | 0.0 | - |
365
+ | 1.2154 | 10050 | 0.0 | - |
366
+ | 1.2214 | 10100 | 0.0 | - |
367
+ | 1.2275 | 10150 | 0.0 | - |
368
+ | 1.2335 | 10200 | 0.0 | - |
369
+ | 1.2396 | 10250 | 0.0 | - |
370
+ | 1.2456 | 10300 | 0.0 | - |
371
+ | 1.2517 | 10350 | 0.0 | - |
372
+ | 1.2577 | 10400 | 0.0 | - |
373
+ | 1.2638 | 10450 | 0.0 | - |
374
+ | 1.2698 | 10500 | 0.0 | - |
375
+ | 1.2758 | 10550 | 0.0 | - |
376
+ | 1.2819 | 10600 | 0.0 | - |
377
+ | 1.2879 | 10650 | 0.0 | - |
378
+ | 1.2940 | 10700 | 0.0 | - |
379
+ | 1.3000 | 10750 | 0.0 | - |
380
+ | 1.3061 | 10800 | 0.0 | - |
381
+ | 1.3121 | 10850 | 0.0 | - |
382
+ | 1.3182 | 10900 | 0.0 | - |
383
+ | 1.3242 | 10950 | 0.0 | - |
384
+ | 1.3303 | 11000 | 0.0 | - |
385
+ | 1.3363 | 11050 | 0.0 | - |
386
+ | 1.3424 | 11100 | 0.0 | - |
387
+ | 1.3484 | 11150 | 0.0 | - |
388
+ | 1.3545 | 11200 | 0.0 | - |
389
+ | 1.3605 | 11250 | 0.0 | - |
390
+ | 1.3665 | 11300 | 0.0 | - |
391
+ | 1.3726 | 11350 | 0.0137 | - |
392
+ | 1.3786 | 11400 | 0.0211 | - |
393
+ | 1.3847 | 11450 | 0.0047 | - |
394
+ | 1.3907 | 11500 | 0.0048 | - |
395
+ | 1.3968 | 11550 | 0.0008 | - |
396
+ | 1.4028 | 11600 | 0.0 | - |
397
+ | 1.4089 | 11650 | 0.0 | - |
398
+ | 1.4149 | 11700 | 0.0 | - |
399
+ | 1.4210 | 11750 | 0.0 | - |
400
+ | 1.4270 | 11800 | 0.0 | - |
401
+ | 1.4331 | 11850 | 0.0 | - |
402
+ | 1.4391 | 11900 | 0.0 | - |
403
+ | 1.4452 | 11950 | 0.0 | - |
404
+ | 1.4512 | 12000 | 0.0 | - |
405
+ | 1.4572 | 12050 | 0.0 | - |
406
+ | 1.4633 | 12100 | 0.0 | - |
407
+ | 1.4693 | 12150 | 0.0 | - |
408
+ | 1.4754 | 12200 | 0.0 | - |
409
+ | 1.4814 | 12250 | 0.0 | - |
410
+ | 1.4875 | 12300 | 0.0 | - |
411
+ | 1.4935 | 12350 | 0.0 | - |
412
+ | 1.4996 | 12400 | 0.0 | - |
413
+ | 1.5056 | 12450 | 0.0 | - |
414
+ | 1.5117 | 12500 | 0.0 | - |
415
+ | 1.5177 | 12550 | 0.0 | - |
416
+ | 1.5238 | 12600 | 0.0 | - |
417
+ | 1.5298 | 12650 | 0.0 | - |
418
+ | 1.5359 | 12700 | 0.0 | - |
419
+ | 1.5419 | 12750 | 0.0 | - |
420
+ | 1.5480 | 12800 | 0.0 | - |
421
+ | 1.5540 | 12850 | 0.0 | - |
422
+ | 1.5600 | 12900 | 0.0 | - |
423
+ | 1.5661 | 12950 | 0.0 | - |
424
+ | 1.5721 | 13000 | 0.0 | - |
425
+ | 1.5782 | 13050 | 0.0 | - |
426
+ | 1.5842 | 13100 | 0.0 | - |
427
+ | 1.5903 | 13150 | 0.0 | - |
428
+ | 1.5963 | 13200 | 0.0 | - |
429
+ | 1.6024 | 13250 | 0.0 | - |
430
+ | 1.6084 | 13300 | 0.0 | - |
431
+ | 1.6145 | 13350 | 0.0 | - |
432
+ | 1.6205 | 13400 | 0.0 | - |
433
+ | 1.6266 | 13450 | 0.0 | - |
434
+ | 1.6326 | 13500 | 0.0 | - |
435
+ | 1.6387 | 13550 | 0.0 | - |
436
+ | 1.6447 | 13600 | 0.0 | - |
437
+ | 1.6507 | 13650 | 0.0 | - |
438
+ | 1.6568 | 13700 | 0.0 | - |
439
+ | 1.6628 | 13750 | 0.0 | - |
440
+ | 1.6689 | 13800 | 0.0 | - |
441
+ | 1.6749 | 13850 | 0.0 | - |
442
+ | 1.6810 | 13900 | 0.0 | - |
443
+ | 1.6870 | 13950 | 0.0 | - |
444
+ | 1.6931 | 14000 | 0.0 | - |
445
+ | 1.6991 | 14050 | 0.0 | - |
446
+ | 1.7052 | 14100 | 0.0 | - |
447
+ | 1.7112 | 14150 | 0.0 | - |
448
+ | 1.7173 | 14200 | 0.0 | - |
449
+ | 1.7233 | 14250 | 0.0 | - |
450
+ | 1.7294 | 14300 | 0.0 | - |
451
+ | 1.7354 | 14350 | 0.0 | - |
452
+ | 1.7414 | 14400 | 0.0 | - |
453
+ | 1.7475 | 14450 | 0.0 | - |
454
+ | 1.7535 | 14500 | 0.0 | - |
455
+ | 1.7596 | 14550 | 0.0 | - |
456
+ | 1.7656 | 14600 | 0.0 | - |
457
+ | 1.7717 | 14650 | 0.0 | - |
458
+ | 1.7777 | 14700 | 0.0 | - |
459
+ | 1.7838 | 14750 | 0.0 | - |
460
+ | 1.7898 | 14800 | 0.0 | - |
461
+ | 1.7959 | 14850 | 0.0 | - |
462
+ | 1.8019 | 14900 | 0.0 | - |
463
+ | 1.8080 | 14950 | 0.0 | - |
464
+ | 1.8140 | 15000 | 0.0 | - |
465
+ | 1.8201 | 15050 | 0.0 | - |
466
+ | 1.8261 | 15100 | 0.0 | - |
467
+ | 1.8321 | 15150 | 0.0 | - |
468
+ | 1.8382 | 15200 | 0.0 | - |
469
+ | 1.8442 | 15250 | 0.0 | - |
470
+ | 1.8503 | 15300 | 0.0 | - |
471
+ | 1.8563 | 15350 | 0.0 | - |
472
+ | 1.8624 | 15400 | 0.0 | - |
473
+ | 1.8684 | 15450 | 0.0 | - |
474
+ | 1.8745 | 15500 | 0.0 | - |
475
+ | 1.8805 | 15550 | 0.0 | - |
476
+ | 1.8866 | 15600 | 0.0 | - |
477
+ | 1.8926 | 15650 | 0.0 | - |
478
+ | 1.8987 | 15700 | 0.0 | - |
479
+ | 1.9047 | 15750 | 0.0 | - |
480
+ | 1.9108 | 15800 | 0.0 | - |
481
+ | 1.9168 | 15850 | 0.0 | - |
482
+ | 1.9228 | 15900 | 0.0 | - |
483
+ | 1.9289 | 15950 | 0.0 | - |
484
+ | 1.9349 | 16000 | 0.0 | - |
485
+ | 1.9410 | 16050 | 0.0 | - |
486
+ | 1.9470 | 16100 | 0.0 | - |
487
+ | 1.9531 | 16150 | 0.0 | - |
488
+ | 1.9591 | 16200 | 0.0 | - |
489
+ | 1.9652 | 16250 | 0.0 | - |
490
+ | 1.9712 | 16300 | 0.0 | - |
491
+ | 1.9773 | 16350 | 0.0 | - |
492
+ | 1.9833 | 16400 | 0.0 | - |
493
+ | 1.9894 | 16450 | 0.0 | - |
494
+ | 1.9954 | 16500 | 0.0 | - |
495
+ | 2.0 | 16538 | - | 0.3646 |
496
+ | 2.0015 | 16550 | 0.0 | - |
497
+ | 2.0075 | 16600 | 0.0 | - |
498
+ | 2.0135 | 16650 | 0.0 | - |
499
+ | 2.0196 | 16700 | 0.0 | - |
500
+ | 2.0256 | 16750 | 0.0 | - |
501
+ | 2.0317 | 16800 | 0.0 | - |
502
+ | 2.0377 | 16850 | 0.0 | - |
503
+ | 2.0438 | 16900 | 0.0 | - |
504
+ | 2.0498 | 16950 | 0.0 | - |
505
+ | 2.0559 | 17000 | 0.0 | - |
506
+ | 2.0619 | 17050 | 0.0 | - |
507
+ | 2.0680 | 17100 | 0.0 | - |
508
+ | 2.0740 | 17150 | 0.0 | - |
509
+ | 2.0801 | 17200 | 0.0 | - |
510
+ | 2.0861 | 17250 | 0.0 | - |
511
+ | 2.0922 | 17300 | 0.0 | - |
512
+ | 2.0982 | 17350 | 0.0 | - |
513
+ | 2.1042 | 17400 | 0.0 | - |
514
+ | 2.1103 | 17450 | 0.0 | - |
515
+ | 2.1163 | 17500 | 0.0 | - |
516
+ | 2.1224 | 17550 | 0.0 | - |
517
+ | 2.1284 | 17600 | 0.0 | - |
518
+ | 2.1345 | 17650 | 0.0 | - |
519
+ | 2.1405 | 17700 | 0.0 | - |
520
+ | 2.1466 | 17750 | 0.0 | - |
521
+ | 2.1526 | 17800 | 0.0 | - |
522
+ | 2.1587 | 17850 | 0.0 | - |
523
+ | 2.1647 | 17900 | 0.0 | - |
524
+ | 2.1708 | 17950 | 0.0 | - |
525
+ | 2.1768 | 18000 | 0.0 | - |
526
+ | 2.1829 | 18050 | 0.0 | - |
527
+ | 2.1889 | 18100 | 0.0 | - |
528
+ | 2.1949 | 18150 | 0.0 | - |
529
+ | 2.2010 | 18200 | 0.0 | - |
530
+ | 2.2070 | 18250 | 0.0 | - |
531
+ | 2.2131 | 18300 | 0.0 | - |
532
+ | 2.2191 | 18350 | 0.0 | - |
533
+ | 2.2252 | 18400 | 0.0 | - |
534
+ | 2.2312 | 18450 | 0.0 | - |
535
+ | 2.2373 | 18500 | 0.0 | - |
536
+ | 2.2433 | 18550 | 0.0 | - |
537
+ | 2.2494 | 18600 | 0.0 | - |
538
+ | 2.2554 | 18650 | 0.0 | - |
539
+ | 2.2615 | 18700 | 0.0 | - |
540
+ | 2.2675 | 18750 | 0.0 | - |
541
+ | 2.2736 | 18800 | 0.0 | - |
542
+ | 2.2796 | 18850 | 0.0 | - |
543
+ | 2.2856 | 18900 | 0.0 | - |
544
+ | 2.2917 | 18950 | 0.0 | - |
545
+ | 2.2977 | 19000 | 0.0 | - |
546
+ | 2.3038 | 19050 | 0.0 | - |
547
+ | 2.3098 | 19100 | 0.0 | - |
548
+ | 2.3159 | 19150 | 0.0 | - |
549
+ | 2.3219 | 19200 | 0.0 | - |
550
+ | 2.3280 | 19250 | 0.0 | - |
551
+ | 2.3340 | 19300 | 0.0 | - |
552
+ | 2.3401 | 19350 | 0.0 | - |
553
+ | 2.3461 | 19400 | 0.0 | - |
554
+ | 2.3522 | 19450 | 0.0 | - |
555
+ | 2.3582 | 19500 | 0.0 | - |
556
+ | 2.3643 | 19550 | 0.0 | - |
557
+ | 2.3703 | 19600 | 0.0 | - |
558
+ | 2.3763 | 19650 | 0.0 | - |
559
+ | 2.3824 | 19700 | 0.0 | - |
560
+ | 2.3884 | 19750 | 0.0 | - |
561
+ | 2.3945 | 19800 | 0.0 | - |
562
+ | 2.4005 | 19850 | 0.0 | - |
563
+ | 2.4066 | 19900 | 0.0 | - |
564
+ | 2.4126 | 19950 | 0.0 | - |
565
+ | 2.4187 | 20000 | 0.0 | - |
566
+ | 2.4247 | 20050 | 0.0 | - |
567
+ | 2.4308 | 20100 | 0.0 | - |
568
+ | 2.4368 | 20150 | 0.0 | - |
569
+ | 2.4429 | 20200 | 0.0 | - |
570
+ | 2.4489 | 20250 | 0.0 | - |
571
+ | 2.4550 | 20300 | 0.0 | - |
572
+ | 2.4610 | 20350 | 0.0 | - |
573
+ | 2.4670 | 20400 | 0.0 | - |
574
+ | 2.4731 | 20450 | 0.0 | - |
575
+ | 2.4791 | 20500 | 0.0 | - |
576
+ | 2.4852 | 20550 | 0.0 | - |
577
+ | 2.4912 | 20600 | 0.0 | - |
578
+ | 2.4973 | 20650 | 0.0 | - |
579
+ | 2.5033 | 20700 | 0.0 | - |
580
+ | 2.5094 | 20750 | 0.0 | - |
581
+ | 2.5154 | 20800 | 0.0 | - |
582
+ | 2.5215 | 20850 | 0.0 | - |
583
+ | 2.5275 | 20900 | 0.0 | - |
584
+ | 2.5336 | 20950 | 0.0 | - |
585
+ | 2.5396 | 21000 | 0.0 | - |
586
+ | 2.5457 | 21050 | 0.0 | - |
587
+ | 2.5517 | 21100 | 0.0 | - |
588
+ | 2.5577 | 21150 | 0.0 | - |
589
+ | 2.5638 | 21200 | 0.0 | - |
590
+ | 2.5698 | 21250 | 0.0 | - |
591
+ | 2.5759 | 21300 | 0.0 | - |
592
+ | 2.5819 | 21350 | 0.0 | - |
593
+ | 2.5880 | 21400 | 0.0 | - |
594
+ | 2.5940 | 21450 | 0.0 | - |
595
+ | 2.6001 | 21500 | 0.0 | - |
596
+ | 2.6061 | 21550 | 0.0 | - |
597
+ | 2.6122 | 21600 | 0.0 | - |
598
+ | 2.6182 | 21650 | 0.0 | - |
599
+ | 2.6243 | 21700 | 0.0 | - |
600
+ | 2.6303 | 21750 | 0.0 | - |
601
+ | 2.6364 | 21800 | 0.0 | - |
602
+ | 2.6424 | 21850 | 0.0 | - |
603
+ | 2.6484 | 21900 | 0.0 | - |
604
+ | 2.6545 | 21950 | 0.0 | - |
605
+ | 2.6605 | 22000 | 0.0 | - |
606
+ | 2.6666 | 22050 | 0.0 | - |
607
+ | 2.6726 | 22100 | 0.0 | - |
608
+ | 2.6787 | 22150 | 0.0 | - |
609
+ | 2.6847 | 22200 | 0.0 | - |
610
+ | 2.6908 | 22250 | 0.0 | - |
611
+ | 2.6968 | 22300 | 0.0 | - |
612
+ | 2.7029 | 22350 | 0.0 | - |
613
+ | 2.7089 | 22400 | 0.0 | - |
614
+ | 2.7150 | 22450 | 0.0 | - |
615
+ | 2.7210 | 22500 | 0.0 | - |
616
+ | 2.7271 | 22550 | 0.0 | - |
617
+ | 2.7331 | 22600 | 0.0 | - |
618
+ | 2.7391 | 22650 | 0.0 | - |
619
+ | 2.7452 | 22700 | 0.0 | - |
620
+ | 2.7512 | 22750 | 0.0 | - |
621
+ | 2.7573 | 22800 | 0.0 | - |
622
+ | 2.7633 | 22850 | 0.0 | - |
623
+ | 2.7694 | 22900 | 0.0 | - |
624
+ | 2.7754 | 22950 | 0.0 | - |
625
+ | 2.7815 | 23000 | 0.0 | - |
626
+ | 2.7875 | 23050 | 0.0 | - |
627
+ | 2.7936 | 23100 | 0.0 | - |
628
+ | 2.7996 | 23150 | 0.0 | - |
629
+ | 2.8057 | 23200 | 0.0 | - |
630
+ | 2.8117 | 23250 | 0.0 | - |
631
+ | 2.8178 | 23300 | 0.0 | - |
632
+ | 2.8238 | 23350 | 0.0 | - |
633
+ | 2.8298 | 23400 | 0.0 | - |
634
+ | 2.8359 | 23450 | 0.0 | - |
635
+ | 2.8419 | 23500 | 0.0 | - |
636
+ | 2.8480 | 23550 | 0.0 | - |
637
+ | 2.8540 | 23600 | 0.0 | - |
638
+ | 2.8601 | 23650 | 0.0 | - |
639
+ | 2.8661 | 23700 | 0.0 | - |
640
+ | 2.8722 | 23750 | 0.0 | - |
641
+ | 2.8782 | 23800 | 0.0 | - |
642
+ | 2.8843 | 23850 | 0.0 | - |
643
+ | 2.8903 | 23900 | 0.0 | - |
644
+ | 2.8964 | 23950 | 0.0 | - |
645
+ | 2.9024 | 24000 | 0.0 | - |
646
+ | 2.9085 | 24050 | 0.0 | - |
647
+ | 2.9145 | 24100 | 0.0 | - |
648
+ | 2.9205 | 24150 | 0.0 | - |
649
+ | 2.9266 | 24200 | 0.0 | - |
650
+ | 2.9326 | 24250 | 0.0 | - |
651
+ | 2.9387 | 24300 | 0.0 | - |
652
+ | 2.9447 | 24350 | 0.0 | - |
653
+ | 2.9508 | 24400 | 0.0 | - |
654
+ | 2.9568 | 24450 | 0.0 | - |
655
+ | 2.9629 | 24500 | 0.0 | - |
656
+ | 2.9689 | 24550 | 0.0 | - |
657
+ | 2.9750 | 24600 | 0.0 | - |
658
+ | 2.9810 | 24650 | 0.0 | - |
659
+ | 2.9871 | 24700 | 0.0 | - |
660
+ | 2.9931 | 24750 | 0.0 | - |
661
+ | 2.9992 | 24800 | 0.0 | - |
662
+ | 3.0 | 24807 | - | 0.3517 |
663
+
664
+ ### Framework Versions
665
+ - Python: 3.11.11
666
+ - SetFit: 1.1.1
667
+ - Sentence Transformers: 3.4.1
668
+ - Transformers: 4.49.0
669
+ - PyTorch: 2.4.1.post300
670
+ - Datasets: 3.4.0
671
+ - Tokenizers: 0.21.0
672
+
673
+ ## Citation
674
+
675
+ ### BibTeX
676
+ ```bibtex
677
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
678
+ doi = {10.48550/ARXIV.2209.11055},
679
+ url = {https://arxiv.org/abs/2209.11055},
680
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
681
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
682
+ title = {Efficient Few-Shot Learning Without Prompts},
683
+ publisher = {arXiv},
684
+ year = {2022},
685
+ copyright = {Creative Commons Attribution 4.0 International}
686
+ }
687
+ ```
688
+
689
+ <!--
690
+ ## Glossary
691
+
692
+ *Clearly define terms in order to be accessible across audiences.*
693
+ -->
694
+
695
+ <!--
696
+ ## Model Card Authors
697
+
698
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
699
+ -->
700
+
701
+ <!--
702
+ ## Model Card Contact
703
+
704
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
705
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "deutsche-telekom/gbert-large-paraphrase-cosine",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 1024,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 4096,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 24,
18
+ "pad_token_id": 0,
19
+ "position_embedding_type": "absolute",
20
+ "torch_dtype": "float32",
21
+ "transformers_version": "4.49.0",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 31102
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.4.1.post300"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "supportive",
4
+ "opposed",
5
+ "neutral"
6
+ ],
7
+ "normalize_embeddings": false
8
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6729169ef910b1e3fd41c1aa4a5b254b09782ac1e224499a278f27f5874d50b4
3
+ size 1342988112
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1098dba87709ffe99bbfc98909066a4e8b6a6bd0a025d25d0b28c61514c2585
3
+ size 25567
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "101": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "102": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "103": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": false,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_len": 512,
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": false,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff