--- tags: - setfit - sentence-transformers - text-classification - generated_from_setfit_trainer widget: - text: '"Während die Welt arbeitet, um Lösungen für die tatsächlichen Probleme zu finden, verschwenden junge Aktivisten ihre Zeit mit Straßenblockaden und Schütteln von Plakaten. Ihre Rhetorik ist einstudiert, ihre Wirklichkeitserfahrung jedoch begrenzt."' - text: Die jüngsten Gesetzesinitiativen zur flächendeckenden Einführung von Wärmepumpen markieren einen bedeutenden Schritt in Richtung einer nachhaltigeren Energiezukunft und könnten langfristig zur Reduzierung von CO2-Emissionen im Gebäudesektor beitragen. Durch die Förderung dieser umweltfreundlichen Technologie wird nicht nur der Klimaschutz gestärkt, sondern auch die Abhängigkeit von fossilen Brennstoffen verringert. - text: Die Debatte über die Einführung eines nationalen Tempolimits auf deutschen Autobahnen bleibt weiterhin ein umstrittenes Thema in der Politik. Befürworter argumentieren mit positiven Auswirkungen auf die Verkehrssicherheit und den Umweltschutz, während Gegner auf individuelle Freiheitsrechte und wirtschaftliche Faktoren verweisen. Der Ausgang der Gesetzesinitiativen ist bisher ungewiss. - text: 'Chaos auf den Straßen und genervte Pendler: Die Klima-Aktivisten von Fridays for Future und der Letzten Generation sorgen erneut für Unmut in der Bevölkerung. Während sie für ihre Sache kämpfen, wächst der Frust über ihre umstrittenen Methoden.' - text: Inmitten wachsender Besorgnis über den Klimawandel setzen Klima-Aktivismus-Gruppen wie Fridays for Future und die Letzte Generation mit ihren Aktionen ein starkes Zeichen für die Dringlichkeit des Umweltschutzes. Ihre Entschlossenheit, auf die Notwendigkeit rascher politischer und gesellschaftlicher Veränderungen hinzuweisen, findet bei vielen Menschen Anklang und regt zum Nachdenken an. metrics: - accuracy pipeline_tag: text-classification library_name: setfit inference: true base_model: nomic-ai/modernbert-embed-base model-index: - name: SetFit with nomic-ai/modernbert-embed-base results: - task: type: text-classification name: Text Classification dataset: name: Unknown type: unknown split: test metrics: - type: accuracy value: 0.9771428571428571 name: Accuracy --- # SetFit with nomic-ai/modernbert-embed-base This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. The model has been trained using an efficient few-shot learning technique that involves: 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. 2. Training a classification head with features from the fine-tuned Sentence Transformer. ## Model Details ### Model Description - **Model Type:** SetFit - **Sentence Transformer body:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance - **Maximum Sequence Length:** 8192 tokens - **Number of Classes:** 3 classes ### Model Sources - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) ### Model Labels | Label | Examples | |:-----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | opposed | | | neutral | | | supportive | | ## Evaluation ### Metrics | Label | Accuracy | |:--------|:---------| | **all** | 0.9771 | ## Uses ### Direct Use for Inference First install the SetFit library: ```bash pip install setfit ``` Then you can load this model and run inference. ```python from setfit import SetFitModel # Download from the 🤗 Hub model = SetFitModel.from_pretrained("cbpuschmann/klimacoder_modernbert_v0.1") # Run inference preds = model("Chaos auf den Straßen und genervte Pendler: Die Klima-Aktivisten von Fridays for Future und der Letzten Generation sorgen erneut für Unmut in der Bevölkerung. Während sie für ihre Sache kämpfen, wächst der Frust über ihre umstrittenen Methoden.") ``` ## Training Details ### Training Set Metrics | Training set | Min | Median | Max | |:-------------|:----|:--------|:----| | Word count | 24 | 44.1632 | 73 | | Label | Training Sample Count | |:-----------|:----------------------| | neutral | 503 | | opposed | 536 | | supportive | 536 | ### Training Hyperparameters - batch_size: (32, 32) - num_epochs: (1, 1) - max_steps: -1 - sampling_strategy: oversampling - body_learning_rate: (2e-05, 1e-05) - head_learning_rate: 0.01 - loss: CosineSimilarityLoss - distance_metric: cosine_distance - margin: 0.25 - end_to_end: False - use_amp: False - warmup_proportion: 0.1 - l2_weight: 0.01 - seed: 42 - eval_max_steps: -1 - load_best_model_at_end: False ### Training Results | Epoch | Step | Training Loss | Validation Loss | |:------:|:-----:|:-------------:|:---------------:| | 0.0000 | 1 | 0.343 | - | | 0.0010 | 50 | 0.3042 | - | | 0.0019 | 100 | 0.2881 | - | | 0.0029 | 150 | 0.2698 | - | | 0.0039 | 200 | 0.2463 | - | | 0.0048 | 250 | 0.2377 | - | | 0.0058 | 300 | 0.2319 | - | | 0.0068 | 350 | 0.2074 | - | | 0.0077 | 400 | 0.1729 | - | | 0.0087 | 450 | 0.1458 | - | | 0.0097 | 500 | 0.1004 | - | | 0.0106 | 550 | 0.0714 | - | | 0.0116 | 600 | 0.0452 | - | | 0.0126 | 650 | 0.028 | - | | 0.0136 | 700 | 0.0149 | - | | 0.0145 | 750 | 0.0101 | - | | 0.0155 | 800 | 0.0067 | - | | 0.0165 | 850 | 0.0037 | - | | 0.0174 | 900 | 0.0032 | - | | 0.0184 | 950 | 0.0023 | - | | 0.0194 | 1000 | 0.0017 | - | | 0.0203 | 1050 | 0.0011 | - | | 0.0213 | 1100 | 0.0006 | - | | 0.0223 | 1150 | 0.0011 | - | | 0.0232 | 1200 | 0.0016 | - | | 0.0242 | 1250 | 0.0021 | - | | 0.0252 | 1300 | 0.0004 | - | | 0.0261 | 1350 | 0.0003 | - | | 0.0271 | 1400 | 0.0009 | - | | 0.0281 | 1450 | 0.002 | - | | 0.0290 | 1500 | 0.0008 | - | | 0.0300 | 1550 | 0.0012 | - | | 0.0310 | 1600 | 0.0003 | - | | 0.0319 | 1650 | 0.0002 | - | | 0.0329 | 1700 | 0.0003 | - | | 0.0339 | 1750 | 0.0002 | - | | 0.0348 | 1800 | 0.0001 | - | | 0.0358 | 1850 | 0.0001 | - | | 0.0368 | 1900 | 0.0001 | - | | 0.0377 | 1950 | 0.0001 | - | | 0.0387 | 2000 | 0.0001 | - | | 0.0397 | 2050 | 0.0001 | - | | 0.0407 | 2100 | 0.0001 | - | | 0.0416 | 2150 | 0.0001 | - | | 0.0426 | 2200 | 0.0001 | - | | 0.0436 | 2250 | 0.0001 | - | | 0.0445 | 2300 | 0.0001 | - | | 0.0455 | 2350 | 0.0001 | - | | 0.0465 | 2400 | 0.0001 | - | | 0.0474 | 2450 | 0.0001 | - | | 0.0484 | 2500 | 0.0001 | - | | 0.0494 | 2550 | 0.0 | - | | 0.0503 | 2600 | 0.0 | - | | 0.0513 | 2650 | 0.0 | - | | 0.0523 | 2700 | 0.0 | - | | 0.0532 | 2750 | 0.0 | - | | 0.0542 | 2800 | 0.0 | - | | 0.0552 | 2850 | 0.0 | - | | 0.0561 | 2900 | 0.0 | - | | 0.0571 | 2950 | 0.0 | - | | 0.0581 | 3000 | 0.0 | - | | 0.0590 | 3050 | 0.0 | - | | 0.0600 | 3100 | 0.0 | - | | 0.0610 | 3150 | 0.0 | - | | 0.0619 | 3200 | 0.0 | - | | 0.0629 | 3250 | 0.0 | - | | 0.0639 | 3300 | 0.0 | - | | 0.0649 | 3350 | 0.0 | - | | 0.0658 | 3400 | 0.0 | - | | 0.0668 | 3450 | 0.0 | - | | 0.0678 | 3500 | 0.0 | - | | 0.0687 | 3550 | 0.0 | - | | 0.0697 | 3600 | 0.0 | - | | 0.0707 | 3650 | 0.0 | - | | 0.0716 | 3700 | 0.0 | - | | 0.0726 | 3750 | 0.0 | - | | 0.0736 | 3800 | 0.0 | - | | 0.0745 | 3850 | 0.0 | - | | 0.0755 | 3900 | 0.0 | - | | 0.0765 | 3950 | 0.0 | - | | 0.0774 | 4000 | 0.0 | - | | 0.0784 | 4050 | 0.0 | - | | 0.0794 | 4100 | 0.0 | - | | 0.0803 | 4150 | 0.0 | - | | 0.0813 | 4200 | 0.0 | - | | 0.0823 | 4250 | 0.0 | - | | 0.0832 | 4300 | 0.0 | - | | 0.0842 | 4350 | 0.0 | - | | 0.0852 | 4400 | 0.0 | - | | 0.0861 | 4450 | 0.0 | - | | 0.0871 | 4500 | 0.0 | - | | 0.0881 | 4550 | 0.0 | - | | 0.0890 | 4600 | 0.0 | - | | 0.0900 | 4650 | 0.0 | - | | 0.0910 | 4700 | 0.0 | - | | 0.0920 | 4750 | 0.0 | - | | 0.0929 | 4800 | 0.0 | - | | 0.0939 | 4850 | 0.0 | - | | 0.0949 | 4900 | 0.0 | - | | 0.0958 | 4950 | 0.0 | - | | 0.0968 | 5000 | 0.0 | - | | 0.0978 | 5050 | 0.0 | - | | 0.0987 | 5100 | 0.0 | - | | 0.0997 | 5150 | 0.0 | - | | 0.1007 | 5200 | 0.0 | - | | 0.1016 | 5250 | 0.0 | - | | 0.1026 | 5300 | 0.0 | - | | 0.1036 | 5350 | 0.0 | - | | 0.1045 | 5400 | 0.0 | - | | 0.1055 | 5450 | 0.0 | - | | 0.1065 | 5500 | 0.0 | - | | 0.1074 | 5550 | 0.0 | - | | 0.1084 | 5600 | 0.0 | - | | 0.1094 | 5650 | 0.0 | - | | 0.1103 | 5700 | 0.0 | - | | 0.1113 | 5750 | 0.0 | - | | 0.1123 | 5800 | 0.0 | - | | 0.1132 | 5850 | 0.0 | - | | 0.1142 | 5900 | 0.0 | - | | 0.1152 | 5950 | 0.0 | - | | 0.1162 | 6000 | 0.0 | - | | 0.1171 | 6050 | 0.0 | - | | 0.1181 | 6100 | 0.0 | - | | 0.1191 | 6150 | 0.0 | - | | 0.1200 | 6200 | 0.0 | - | | 0.1210 | 6250 | 0.0 | - | | 0.1220 | 6300 | 0.0 | - | | 0.1229 | 6350 | 0.0 | - | | 0.1239 | 6400 | 0.0 | - | | 0.1249 | 6450 | 0.0 | - | | 0.1258 | 6500 | 0.0 | - | | 0.1268 | 6550 | 0.0 | - | | 0.1278 | 6600 | 0.0 | - | | 0.1287 | 6650 | 0.0 | - | | 0.1297 | 6700 | 0.0 | - | | 0.1307 | 6750 | 0.0 | - | | 0.1316 | 6800 | 0.0 | - | | 0.1326 | 6850 | 0.0 | - | | 0.1336 | 6900 | 0.0 | - | | 0.1345 | 6950 | 0.0 | - | | 0.1355 | 7000 | 0.0 | - | | 0.1365 | 7050 | 0.0 | - | | 0.1374 | 7100 | 0.0 | - | | 0.1384 | 7150 | 0.0 | - | | 0.1394 | 7200 | 0.0 | - | | 0.1403 | 7250 | 0.0 | - | | 0.1413 | 7300 | 0.0 | - | | 0.1423 | 7350 | 0.0 | - | | 0.1433 | 7400 | 0.0 | - | | 0.1442 | 7450 | 0.0 | - | | 0.1452 | 7500 | 0.0 | - | | 0.1462 | 7550 | 0.0 | - | | 0.1471 | 7600 | 0.0 | - | | 0.1481 | 7650 | 0.0 | - | | 0.1491 | 7700 | 0.0 | - | | 0.1500 | 7750 | 0.0 | - | | 0.1510 | 7800 | 0.0 | - | | 0.1520 | 7850 | 0.0 | - | | 0.1529 | 7900 | 0.0 | - | | 0.1539 | 7950 | 0.0 | - | | 0.1549 | 8000 | 0.0 | - | | 0.1558 | 8050 | 0.0 | - | | 0.1568 | 8100 | 0.0 | - | | 0.1578 | 8150 | 0.0 | - | | 0.1587 | 8200 | 0.0 | - | | 0.1597 | 8250 | 0.0 | - | | 0.1607 | 8300 | 0.0 | - | | 0.1616 | 8350 | 0.0 | - | | 0.1626 | 8400 | 0.0 | - | | 0.1636 | 8450 | 0.0 | - | | 0.1645 | 8500 | 0.0 | - | | 0.1655 | 8550 | 0.0 | - | | 0.1665 | 8600 | 0.0 | - | | 0.1675 | 8650 | 0.0 | - | | 0.1684 | 8700 | 0.0 | - | | 0.1694 | 8750 | 0.0 | - | | 0.1704 | 8800 | 0.0 | - | | 0.1713 | 8850 | 0.0 | - | | 0.1723 | 8900 | 0.0 | - | | 0.1733 | 8950 | 0.0 | - | | 0.1742 | 9000 | 0.0 | - | | 0.1752 | 9050 | 0.0 | - | | 0.1762 | 9100 | 0.0 | - | | 0.1771 | 9150 | 0.0 | - | | 0.1781 | 9200 | 0.0 | - | | 0.1791 | 9250 | 0.0 | - | | 0.1800 | 9300 | 0.0 | - | | 0.1810 | 9350 | 0.0 | - | | 0.1820 | 9400 | 0.0 | - | | 0.1829 | 9450 | 0.0 | - | | 0.1839 | 9500 | 0.0 | - | | 0.1849 | 9550 | 0.0 | - | | 0.1858 | 9600 | 0.0 | - | | 0.1868 | 9650 | 0.0 | - | | 0.1878 | 9700 | 0.0 | - | | 0.1887 | 9750 | 0.0 | - | | 0.1897 | 9800 | 0.0 | - | | 0.1907 | 9850 | 0.0 | - | | 0.1916 | 9900 | 0.0 | - | | 0.1926 | 9950 | 0.0 | - | | 0.1936 | 10000 | 0.0 | - | | 0.1946 | 10050 | 0.0 | - | | 0.1955 | 10100 | 0.0 | - | | 0.1965 | 10150 | 0.0 | - | | 0.1975 | 10200 | 0.0 | - | | 0.1984 | 10250 | 0.0 | - | | 0.1994 | 10300 | 0.0 | - | | 0.2004 | 10350 | 0.0 | - | | 0.2013 | 10400 | 0.0 | - | | 0.2023 | 10450 | 0.0 | - | | 0.2033 | 10500 | 0.0 | - | | 0.2042 | 10550 | 0.0 | - | | 0.2052 | 10600 | 0.0 | - | | 0.2062 | 10650 | 0.0 | - | | 0.2071 | 10700 | 0.1864 | - | | 0.2081 | 10750 | 0.0643 | - | | 0.2091 | 10800 | 0.0257 | - | | 0.2100 | 10850 | 0.0125 | - | | 0.2110 | 10900 | 0.0097 | - | | 0.2120 | 10950 | 0.0072 | - | | 0.2129 | 11000 | 0.0032 | - | | 0.2139 | 11050 | 0.001 | - | | 0.2149 | 11100 | 0.0001 | - | | 0.2158 | 11150 | 0.0001 | - | | 0.2168 | 11200 | 0.0001 | - | | 0.2178 | 11250 | 0.0 | - | | 0.2188 | 11300 | 0.0001 | - | | 0.2197 | 11350 | 0.0 | - | | 0.2207 | 11400 | 0.0 | - | | 0.2217 | 11450 | 0.0 | - | | 0.2226 | 11500 | 0.0 | - | | 0.2236 | 11550 | 0.0 | - | | 0.2246 | 11600 | 0.0 | - | | 0.2255 | 11650 | 0.0 | - | | 0.2265 | 11700 | 0.0 | - | | 0.2275 | 11750 | 0.0 | - | | 0.2284 | 11800 | 0.0 | - | | 0.2294 | 11850 | 0.0 | - | | 0.2304 | 11900 | 0.0 | - | | 0.2313 | 11950 | 0.0 | - | | 0.2323 | 12000 | 0.0 | - | | 0.2333 | 12050 | 0.0 | - | | 0.2342 | 12100 | 0.0 | - | | 0.2352 | 12150 | 0.0 | - | | 0.2362 | 12200 | 0.0 | - | | 0.2371 | 12250 | 0.0 | - | | 0.2381 | 12300 | 0.0 | - | | 0.2391 | 12350 | 0.0 | - | | 0.2400 | 12400 | 0.0 | - | | 0.2410 | 12450 | 0.0 | - | | 0.2420 | 12500 | 0.0 | - | | 0.2429 | 12550 | 0.0 | - | | 0.2439 | 12600 | 0.0 | - | | 0.2449 | 12650 | 0.0 | - | | 0.2459 | 12700 | 0.0 | - | | 0.2468 | 12750 | 0.0 | - | | 0.2478 | 12800 | 0.0 | - | | 0.2488 | 12850 | 0.0 | - | | 0.2497 | 12900 | 0.0 | - | | 0.2507 | 12950 | 0.0 | - | | 0.2517 | 13000 | 0.0 | - | | 0.2526 | 13050 | 0.0 | - | | 0.2536 | 13100 | 0.0 | - | | 0.2546 | 13150 | 0.0 | - | | 0.2555 | 13200 | 0.0 | - | | 0.2565 | 13250 | 0.0 | - | | 0.2575 | 13300 | 0.0 | - | | 0.2584 | 13350 | 0.0 | - | | 0.2594 | 13400 | 0.0 | - | | 0.2604 | 13450 | 0.0 | - | | 0.2613 | 13500 | 0.0 | - | | 0.2623 | 13550 | 0.0 | - | | 0.2633 | 13600 | 0.0 | - | | 0.2642 | 13650 | 0.0 | - | | 0.2652 | 13700 | 0.0 | - | | 0.2662 | 13750 | 0.0 | - | | 0.2671 | 13800 | 0.0 | - | | 0.2681 | 13850 | 0.0 | - | | 0.2691 | 13900 | 0.0 | - | | 0.2701 | 13950 | 0.0 | - | | 0.2710 | 14000 | 0.0 | - | | 0.2720 | 14050 | 0.0 | - | | 0.2730 | 14100 | 0.0 | - | | 0.2739 | 14150 | 0.0 | - | | 0.2749 | 14200 | 0.0 | - | | 0.2759 | 14250 | 0.0 | - | | 0.2768 | 14300 | 0.0 | - | | 0.2778 | 14350 | 0.0 | - | | 0.2788 | 14400 | 0.0 | - | | 0.2797 | 14450 | 0.0 | - | | 0.2807 | 14500 | 0.0 | - | | 0.2817 | 14550 | 0.0 | - | | 0.2826 | 14600 | 0.0 | - | | 0.2836 | 14650 | 0.0 | - | | 0.2846 | 14700 | 0.0 | - | | 0.2855 | 14750 | 0.0 | - | | 0.2865 | 14800 | 0.0 | - | | 0.2875 | 14850 | 0.0 | - | | 0.2884 | 14900 | 0.0 | - | | 0.2894 | 14950 | 0.0 | - | | 0.2904 | 15000 | 0.0 | - | | 0.2913 | 15050 | 0.0 | - | | 0.2923 | 15100 | 0.0 | - | | 0.2933 | 15150 | 0.0 | - | | 0.2942 | 15200 | 0.0 | - | | 0.2952 | 15250 | 0.0 | - | | 0.2962 | 15300 | 0.0 | - | | 0.2972 | 15350 | 0.0 | - | | 0.2981 | 15400 | 0.0 | - | | 0.2991 | 15450 | 0.0 | - | | 0.3001 | 15500 | 0.0 | - | | 0.3010 | 15550 | 0.0 | - | | 0.3020 | 15600 | 0.0 | - | | 0.3030 | 15650 | 0.0 | - | | 0.3039 | 15700 | 0.0 | - | | 0.3049 | 15750 | 0.0 | - | | 0.3059 | 15800 | 0.0 | - | | 0.3068 | 15850 | 0.0 | - | | 0.3078 | 15900 | 0.0 | - | | 0.3088 | 15950 | 0.0 | - | | 0.3097 | 16000 | 0.0 | - | | 0.3107 | 16050 | 0.0 | - | | 0.3117 | 16100 | 0.0 | - | | 0.3126 | 16150 | 0.0 | - | | 0.3136 | 16200 | 0.0 | - | | 0.3146 | 16250 | 0.0 | - | | 0.3155 | 16300 | 0.0 | - | | 0.3165 | 16350 | 0.0 | - | | 0.3175 | 16400 | 0.0 | - | | 0.3184 | 16450 | 0.0 | - | | 0.3194 | 16500 | 0.0 | - | | 0.3204 | 16550 | 0.0 | - | | 0.3214 | 16600 | 0.0 | - | | 0.3223 | 16650 | 0.0 | - | | 0.3233 | 16700 | 0.0 | - | | 0.3243 | 16750 | 0.0 | - | | 0.3252 | 16800 | 0.0 | - | | 0.3262 | 16850 | 0.0 | - | | 0.3272 | 16900 | 0.0 | - | | 0.3281 | 16950 | 0.0 | - | | 0.3291 | 17000 | 0.0 | - | | 0.3301 | 17050 | 0.0 | - | | 0.3310 | 17100 | 0.0 | - | | 0.3320 | 17150 | 0.0 | - | | 0.3330 | 17200 | 0.0 | - | | 0.3339 | 17250 | 0.0 | - | | 0.3349 | 17300 | 0.0 | - | | 0.3359 | 17350 | 0.0 | - | | 0.3368 | 17400 | 0.0 | - | | 0.3378 | 17450 | 0.0 | - | | 0.3388 | 17500 | 0.0 | - | | 0.3397 | 17550 | 0.0 | - | | 0.3407 | 17600 | 0.0 | - | | 0.3417 | 17650 | 0.0 | - | | 0.3426 | 17700 | 0.0 | - | | 0.3436 | 17750 | 0.0 | - | | 0.3446 | 17800 | 0.0 | - | | 0.3455 | 17850 | 0.0 | - | | 0.3465 | 17900 | 0.0 | - | | 0.3475 | 17950 | 0.0 | - | | 0.3485 | 18000 | 0.0 | - | | 0.3494 | 18050 | 0.0 | - | | 0.3504 | 18100 | 0.0 | - | | 0.3514 | 18150 | 0.0 | - | | 0.3523 | 18200 | 0.0 | - | | 0.3533 | 18250 | 0.0 | - | | 0.3543 | 18300 | 0.0 | - | | 0.3552 | 18350 | 0.0 | - | | 0.3562 | 18400 | 0.0 | - | | 0.3572 | 18450 | 0.0 | - | | 0.3581 | 18500 | 0.0 | - | | 0.3591 | 18550 | 0.0 | - | | 0.3601 | 18600 | 0.0 | - | | 0.3610 | 18650 | 0.0 | - | | 0.3620 | 18700 | 0.0 | - | | 0.3630 | 18750 | 0.0 | - | | 0.3639 | 18800 | 0.0 | - | | 0.3649 | 18850 | 0.0 | - | | 0.3659 | 18900 | 0.0 | - | | 0.3668 | 18950 | 0.0 | - | | 0.3678 | 19000 | 0.0 | - | | 0.3688 | 19050 | 0.0 | - | | 0.3697 | 19100 | 0.0 | - | | 0.3707 | 19150 | 0.0 | - | | 0.3717 | 19200 | 0.0 | - | | 0.3727 | 19250 | 0.0 | - | | 0.3736 | 19300 | 0.0 | - | | 0.3746 | 19350 | 0.0 | - | | 0.3756 | 19400 | 0.0 | - | | 0.3765 | 19450 | 0.0 | - | | 0.3775 | 19500 | 0.0 | - | | 0.3785 | 19550 | 0.0 | - | | 0.3794 | 19600 | 0.0 | - | | 0.3804 | 19650 | 0.0 | - | | 0.3814 | 19700 | 0.0 | - | | 0.3823 | 19750 | 0.0 | - | | 0.3833 | 19800 | 0.0 | - | | 0.3843 | 19850 | 0.0 | - | | 0.3852 | 19900 | 0.0 | - | | 0.3862 | 19950 | 0.0 | - | | 0.3872 | 20000 | 0.0 | - | | 0.3881 | 20050 | 0.0 | - | | 0.3891 | 20100 | 0.0 | - | | 0.3901 | 20150 | 0.0 | - | | 0.3910 | 20200 | 0.0 | - | | 0.3920 | 20250 | 0.0 | - | | 0.3930 | 20300 | 0.0 | - | | 0.3939 | 20350 | 0.0 | - | | 0.3949 | 20400 | 0.0 | - | | 0.3959 | 20450 | 0.0 | - | | 0.3968 | 20500 | 0.0 | - | | 0.3978 | 20550 | 0.0 | - | | 0.3988 | 20600 | 0.0 | - | | 0.3998 | 20650 | 0.0 | - | | 0.4007 | 20700 | 0.0 | - | | 0.4017 | 20750 | 0.0 | - | | 0.4027 | 20800 | 0.0 | - | | 0.4036 | 20850 | 0.0 | - | | 0.4046 | 20900 | 0.0 | - | | 0.4056 | 20950 | 0.0 | - | | 0.4065 | 21000 | 0.0 | - | | 0.4075 | 21050 | 0.0 | - | | 0.4085 | 21100 | 0.0 | - | | 0.4094 | 21150 | 0.0 | - | | 0.4104 | 21200 | 0.0 | - | | 0.4114 | 21250 | 0.0 | - | | 0.4123 | 21300 | 0.0 | - | | 0.4133 | 21350 | 0.0 | - | | 0.4143 | 21400 | 0.0 | - | | 0.4152 | 21450 | 0.0 | - | | 0.4162 | 21500 | 0.0 | - | | 0.4172 | 21550 | 0.0 | - | | 0.4181 | 21600 | 0.0 | - | | 0.4191 | 21650 | 0.0 | - | | 0.4201 | 21700 | 0.0 | - | | 0.4210 | 21750 | 0.0 | - | | 0.4220 | 21800 | 0.0 | - | | 0.4230 | 21850 | 0.0 | - | | 0.4240 | 21900 | 0.0 | - | | 0.4249 | 21950 | 0.0 | - | | 0.4259 | 22000 | 0.0 | - | | 0.4269 | 22050 | 0.0 | - | | 0.4278 | 22100 | 0.0 | - | | 0.4288 | 22150 | 0.0 | - | | 0.4298 | 22200 | 0.0 | - | | 0.4307 | 22250 | 0.0 | - | | 0.4317 | 22300 | 0.0 | - | | 0.4327 | 22350 | 0.0 | - | | 0.4336 | 22400 | 0.0 | - | | 0.4346 | 22450 | 0.0 | - | | 0.4356 | 22500 | 0.0 | - | | 0.4365 | 22550 | 0.0 | - | | 0.4375 | 22600 | 0.0 | - | | 0.4385 | 22650 | 0.0 | - | | 0.4394 | 22700 | 0.0 | - | | 0.4404 | 22750 | 0.0 | - | | 0.4414 | 22800 | 0.0 | - | | 0.4423 | 22850 | 0.0 | - | | 0.4433 | 22900 | 0.0 | - | | 0.4443 | 22950 | 0.0 | - | | 0.4452 | 23000 | 0.0 | - | | 0.4462 | 23050 | 0.0 | - | | 0.4472 | 23100 | 0.0 | - | | 0.4481 | 23150 | 0.0 | - | | 0.4491 | 23200 | 0.0 | - | | 0.4501 | 23250 | 0.0 | - | | 0.4511 | 23300 | 0.0 | - | | 0.4520 | 23350 | 0.0 | - | | 0.4530 | 23400 | 0.0 | - | | 0.4540 | 23450 | 0.0 | - | | 0.4549 | 23500 | 0.0 | - | | 0.4559 | 23550 | 0.0 | - | | 0.4569 | 23600 | 0.0 | - | | 0.4578 | 23650 | 0.0 | - | | 0.4588 | 23700 | 0.0 | - | | 0.4598 | 23750 | 0.0 | - | | 0.4607 | 23800 | 0.0 | - | | 0.4617 | 23850 | 0.0 | - | | 0.4627 | 23900 | 0.0 | - | | 0.4636 | 23950 | 0.0 | - | | 0.4646 | 24000 | 0.0 | - | | 0.4656 | 24050 | 0.0 | - | | 0.4665 | 24100 | 0.0 | - | | 0.4675 | 24150 | 0.0 | - | | 0.4685 | 24200 | 0.0 | - | | 0.4694 | 24250 | 0.0 | - | | 0.4704 | 24300 | 0.0 | - | | 0.4714 | 24350 | 0.0 | - | | 0.4723 | 24400 | 0.0 | - | | 0.4733 | 24450 | 0.0 | - | | 0.4743 | 24500 | 0.0 | - | | 0.4753 | 24550 | 0.0 | - | | 0.4762 | 24600 | 0.0 | - | | 0.4772 | 24650 | 0.0 | - | | 0.4782 | 24700 | 0.0 | - | | 0.4791 | 24750 | 0.0 | - | | 0.4801 | 24800 | 0.0 | - | | 0.4811 | 24850 | 0.0 | - | | 0.4820 | 24900 | 0.0 | - | | 0.4830 | 24950 | 0.0 | - | | 0.4840 | 25000 | 0.0 | - | | 0.4849 | 25050 | 0.0 | - | | 0.4859 | 25100 | 0.0 | - | | 0.4869 | 25150 | 0.0 | - | | 0.4878 | 25200 | 0.0 | - | | 0.4888 | 25250 | 0.0 | - | | 0.4898 | 25300 | 0.0 | - | | 0.4907 | 25350 | 0.0 | - | | 0.4917 | 25400 | 0.0 | - | | 0.4927 | 25450 | 0.0 | - | | 0.4936 | 25500 | 0.0 | - | | 0.4946 | 25550 | 0.0 | - | | 0.4956 | 25600 | 0.0 | - | | 0.4965 | 25650 | 0.0 | - | | 0.4975 | 25700 | 0.0 | - | | 0.4985 | 25750 | 0.0 | - | | 0.4994 | 25800 | 0.0 | - | | 0.5004 | 25850 | 0.0 | - | | 0.5014 | 25900 | 0.0 | - | | 0.5024 | 25950 | 0.0 | - | | 0.5033 | 26000 | 0.0 | - | | 0.5043 | 26050 | 0.0 | - | | 0.5053 | 26100 | 0.0 | - | | 0.5062 | 26150 | 0.0 | - | | 0.5072 | 26200 | 0.0 | - | | 0.5082 | 26250 | 0.0 | - | | 0.5091 | 26300 | 0.0 | - | | 0.5101 | 26350 | 0.0 | - | | 0.5111 | 26400 | 0.0 | - | | 0.5120 | 26450 | 0.0 | - | | 0.5130 | 26500 | 0.0 | - | | 0.5140 | 26550 | 0.0 | - | | 0.5149 | 26600 | 0.0 | - | | 0.5159 | 26650 | 0.0 | - | | 0.5169 | 26700 | 0.0 | - | | 0.5178 | 26750 | 0.0 | - | | 0.5188 | 26800 | 0.0 | - | | 0.5198 | 26850 | 0.0 | - | | 0.5207 | 26900 | 0.0 | - | | 0.5217 | 26950 | 0.0 | - | | 0.5227 | 27000 | 0.0 | - | | 0.5236 | 27050 | 0.0 | - | | 0.5246 | 27100 | 0.0 | - | | 0.5256 | 27150 | 0.0 | - | | 0.5266 | 27200 | 0.0 | - | | 0.5275 | 27250 | 0.0 | - | | 0.5285 | 27300 | 0.0 | - | | 0.5295 | 27350 | 0.0 | - | | 0.5304 | 27400 | 0.0 | - | | 0.5314 | 27450 | 0.0 | - | | 0.5324 | 27500 | 0.0 | - | | 0.5333 | 27550 | 0.0 | - | | 0.5343 | 27600 | 0.0 | - | | 0.5353 | 27650 | 0.0 | - | | 0.5362 | 27700 | 0.0 | - | | 0.5372 | 27750 | 0.0 | - | | 0.5382 | 27800 | 0.0 | - | | 0.5391 | 27850 | 0.0 | - | | 0.5401 | 27900 | 0.0 | - | | 0.5411 | 27950 | 0.0 | - | | 0.5420 | 28000 | 0.0 | - | | 0.5430 | 28050 | 0.0 | - | | 0.5440 | 28100 | 0.0 | - | | 0.5449 | 28150 | 0.0 | - | | 0.5459 | 28200 | 0.0 | - | | 0.5469 | 28250 | 0.0 | - | | 0.5478 | 28300 | 0.0 | - | | 0.5488 | 28350 | 0.0 | - | | 0.5498 | 28400 | 0.0 | - | | 0.5507 | 28450 | 0.0 | - | | 0.5517 | 28500 | 0.0 | - | | 0.5527 | 28550 | 0.0 | - | | 0.5537 | 28600 | 0.0 | - | | 0.5546 | 28650 | 0.0 | - | | 0.5556 | 28700 | 0.0 | - | | 0.5566 | 28750 | 0.0 | - | | 0.5575 | 28800 | 0.0 | - | | 0.5585 | 28850 | 0.0 | - | | 0.5595 | 28900 | 0.0 | - | | 0.5604 | 28950 | 0.0 | - | | 0.5614 | 29000 | 0.0 | - | | 0.5624 | 29050 | 0.0 | - | | 0.5633 | 29100 | 0.0206 | - | | 0.5643 | 29150 | 0.0019 | - | | 0.5653 | 29200 | 0.0028 | - | | 0.5662 | 29250 | 0.0 | - | | 0.5672 | 29300 | 0.0 | - | | 0.5682 | 29350 | 0.0 | - | | 0.5691 | 29400 | 0.0 | - | | 0.5701 | 29450 | 0.0 | - | | 0.5711 | 29500 | 0.0 | - | | 0.5720 | 29550 | 0.0 | - | | 0.5730 | 29600 | 0.0 | - | | 0.5740 | 29650 | 0.0 | - | | 0.5749 | 29700 | 0.0 | - | | 0.5759 | 29750 | 0.0 | - | | 0.5769 | 29800 | 0.0 | - | | 0.5779 | 29850 | 0.0 | - | | 0.5788 | 29900 | 0.0 | - | | 0.5798 | 29950 | 0.0 | - | | 0.5808 | 30000 | 0.0 | - | | 0.5817 | 30050 | 0.0 | - | | 0.5827 | 30100 | 0.0 | - | | 0.5837 | 30150 | 0.0 | - | | 0.5846 | 30200 | 0.0 | - | | 0.5856 | 30250 | 0.0 | - | | 0.5866 | 30300 | 0.0 | - | | 0.5875 | 30350 | 0.0 | - | | 0.5885 | 30400 | 0.0 | - | | 0.5895 | 30450 | 0.0 | - | | 0.5904 | 30500 | 0.0 | - | | 0.5914 | 30550 | 0.0 | - | | 0.5924 | 30600 | 0.0 | - | | 0.5933 | 30650 | 0.0 | - | | 0.5943 | 30700 | 0.0 | - | | 0.5953 | 30750 | 0.0 | - | | 0.5962 | 30800 | 0.0 | - | | 0.5972 | 30850 | 0.0 | - | | 0.5982 | 30900 | 0.0 | - | | 0.5991 | 30950 | 0.0 | - | | 0.6001 | 31000 | 0.0 | - | | 0.6011 | 31050 | 0.0 | - | | 0.6020 | 31100 | 0.0 | - | | 0.6030 | 31150 | 0.0 | - | | 0.6040 | 31200 | 0.0 | - | | 0.6050 | 31250 | 0.0 | - | | 0.6059 | 31300 | 0.0 | - | | 0.6069 | 31350 | 0.0 | - | | 0.6079 | 31400 | 0.0 | - | | 0.6088 | 31450 | 0.0 | - | | 0.6098 | 31500 | 0.0 | - | | 0.6108 | 31550 | 0.0 | - | | 0.6117 | 31600 | 0.0 | - | | 0.6127 | 31650 | 0.0 | - | | 0.6137 | 31700 | 0.0 | - | | 0.6146 | 31750 | 0.0 | - | | 0.6156 | 31800 | 0.0 | - | | 0.6166 | 31850 | 0.0 | - | | 0.6175 | 31900 | 0.0 | - | | 0.6185 | 31950 | 0.0 | - | | 0.6195 | 32000 | 0.0 | - | | 0.6204 | 32050 | 0.0 | - | | 0.6214 | 32100 | 0.0 | - | | 0.6224 | 32150 | 0.0 | - | | 0.6233 | 32200 | 0.0 | - | | 0.6243 | 32250 | 0.0 | - | | 0.6253 | 32300 | 0.0 | - | | 0.6262 | 32350 | 0.0 | - | | 0.6272 | 32400 | 0.0 | - | | 0.6282 | 32450 | 0.0 | - | | 0.6291 | 32500 | 0.0 | - | | 0.6301 | 32550 | 0.0 | - | | 0.6311 | 32600 | 0.0 | - | | 0.6321 | 32650 | 0.0 | - | | 0.6330 | 32700 | 0.0 | - | | 0.6340 | 32750 | 0.0 | - | | 0.6350 | 32800 | 0.0 | - | | 0.6359 | 32850 | 0.0 | - | | 0.6369 | 32900 | 0.0 | - | | 0.6379 | 32950 | 0.0 | - | | 0.6388 | 33000 | 0.0 | - | | 0.6398 | 33050 | 0.0 | - | | 0.6408 | 33100 | 0.0 | - | | 0.6417 | 33150 | 0.0 | - | | 0.6427 | 33200 | 0.0 | - | | 0.6437 | 33250 | 0.0 | - | | 0.6446 | 33300 | 0.0 | - | | 0.6456 | 33350 | 0.0 | - | | 0.6466 | 33400 | 0.0 | - | | 0.6475 | 33450 | 0.0 | - | | 0.6485 | 33500 | 0.0 | - | | 0.6495 | 33550 | 0.0 | - | | 0.6504 | 33600 | 0.0 | - | | 0.6514 | 33650 | 0.0 | - | | 0.6524 | 33700 | 0.0 | - | | 0.6533 | 33750 | 0.0 | - | | 0.6543 | 33800 | 0.0 | - | | 0.6553 | 33850 | 0.0 | - | | 0.6563 | 33900 | 0.0 | - | | 0.6572 | 33950 | 0.0 | - | | 0.6582 | 34000 | 0.0 | - | | 0.6592 | 34050 | 0.0 | - | | 0.6601 | 34100 | 0.0 | - | | 0.6611 | 34150 | 0.0 | - | | 0.6621 | 34200 | 0.0 | - | | 0.6630 | 34250 | 0.0 | - | | 0.6640 | 34300 | 0.0 | - | | 0.6650 | 34350 | 0.0 | - | | 0.6659 | 34400 | 0.0 | - | | 0.6669 | 34450 | 0.0 | - | | 0.6679 | 34500 | 0.0 | - | | 0.6688 | 34550 | 0.0 | - | | 0.6698 | 34600 | 0.0 | - | | 0.6708 | 34650 | 0.0 | - | | 0.6717 | 34700 | 0.0 | - | | 0.6727 | 34750 | 0.0 | - | | 0.6737 | 34800 | 0.0 | - | | 0.6746 | 34850 | 0.0 | - | | 0.6756 | 34900 | 0.0 | - | | 0.6766 | 34950 | 0.0 | - | | 0.6775 | 35000 | 0.0 | - | | 0.6785 | 35050 | 0.0 | - | | 0.6795 | 35100 | 0.0 | - | | 0.6804 | 35150 | 0.0 | - | | 0.6814 | 35200 | 0.0 | - | | 0.6824 | 35250 | 0.0 | - | | 0.6834 | 35300 | 0.0 | - | | 0.6843 | 35350 | 0.0 | - | | 0.6853 | 35400 | 0.0 | - | | 0.6863 | 35450 | 0.0 | - | | 0.6872 | 35500 | 0.0 | - | | 0.6882 | 35550 | 0.0 | - | | 0.6892 | 35600 | 0.0 | - | | 0.6901 | 35650 | 0.0 | - | | 0.6911 | 35700 | 0.0 | - | | 0.6921 | 35750 | 0.0 | - | | 0.6930 | 35800 | 0.0 | - | | 0.6940 | 35850 | 0.0 | - | | 0.6950 | 35900 | 0.0 | - | | 0.6959 | 35950 | 0.0 | - | | 0.6969 | 36000 | 0.0 | - | | 0.6979 | 36050 | 0.0 | - | | 0.6988 | 36100 | 0.0 | - | | 0.6998 | 36150 | 0.0 | - | | 0.7008 | 36200 | 0.0 | - | | 0.7017 | 36250 | 0.0 | - | | 0.7027 | 36300 | 0.0 | - | | 0.7037 | 36350 | 0.0 | - | | 0.7046 | 36400 | 0.0 | - | | 0.7056 | 36450 | 0.0 | - | | 0.7066 | 36500 | 0.0 | - | | 0.7076 | 36550 | 0.0 | - | | 0.7085 | 36600 | 0.0 | - | | 0.7095 | 36650 | 0.0 | - | | 0.7105 | 36700 | 0.0 | - | | 0.7114 | 36750 | 0.0 | - | | 0.7124 | 36800 | 0.0 | - | | 0.7134 | 36850 | 0.0 | - | | 0.7143 | 36900 | 0.0 | - | | 0.7153 | 36950 | 0.0 | - | | 0.7163 | 37000 | 0.0 | - | | 0.7172 | 37050 | 0.0 | - | | 0.7182 | 37100 | 0.0 | - | | 0.7192 | 37150 | 0.0 | - | | 0.7201 | 37200 | 0.0 | - | | 0.7211 | 37250 | 0.0 | - | | 0.7221 | 37300 | 0.0 | - | | 0.7230 | 37350 | 0.0 | - | | 0.7240 | 37400 | 0.0 | - | | 0.7250 | 37450 | 0.0 | - | | 0.7259 | 37500 | 0.0 | - | | 0.7269 | 37550 | 0.0 | - | | 0.7279 | 37600 | 0.0 | - | | 0.7288 | 37650 | 0.0 | - | | 0.7298 | 37700 | 0.0 | - | | 0.7308 | 37750 | 0.0 | - | | 0.7317 | 37800 | 0.0 | - | | 0.7327 | 37850 | 0.0 | - | | 0.7337 | 37900 | 0.0 | - | | 0.7347 | 37950 | 0.0 | - | | 0.7356 | 38000 | 0.0 | - | | 0.7366 | 38050 | 0.0 | - | | 0.7376 | 38100 | 0.0 | - | | 0.7385 | 38150 | 0.0 | - | | 0.7395 | 38200 | 0.0 | - | | 0.7405 | 38250 | 0.0 | - | | 0.7414 | 38300 | 0.0 | - | | 0.7424 | 38350 | 0.0 | - | | 0.7434 | 38400 | 0.0 | - | | 0.7443 | 38450 | 0.0 | - | | 0.7453 | 38500 | 0.0 | - | | 0.7463 | 38550 | 0.0 | - | | 0.7472 | 38600 | 0.0 | - | | 0.7482 | 38650 | 0.0 | - | | 0.7492 | 38700 | 0.0 | - | | 0.7501 | 38750 | 0.0 | - | | 0.7511 | 38800 | 0.0 | - | | 0.7521 | 38850 | 0.0 | - | | 0.7530 | 38900 | 0.0 | - | | 0.7540 | 38950 | 0.0 | - | | 0.7550 | 39000 | 0.0 | - | | 0.7559 | 39050 | 0.0 | - | | 0.7569 | 39100 | 0.0 | - | | 0.7579 | 39150 | 0.0 | - | | 0.7589 | 39200 | 0.0 | - | | 0.7598 | 39250 | 0.0 | - | | 0.7608 | 39300 | 0.0 | - | | 0.7618 | 39350 | 0.0 | - | | 0.7627 | 39400 | 0.0 | - | | 0.7637 | 39450 | 0.0 | - | | 0.7647 | 39500 | 0.0 | - | | 0.7656 | 39550 | 0.0 | - | | 0.7666 | 39600 | 0.0 | - | | 0.7676 | 39650 | 0.0 | - | | 0.7685 | 39700 | 0.0 | - | | 0.7695 | 39750 | 0.0 | - | | 0.7705 | 39800 | 0.0 | - | | 0.7714 | 39850 | 0.0 | - | | 0.7724 | 39900 | 0.0 | - | | 0.7734 | 39950 | 0.0 | - | | 0.7743 | 40000 | 0.0 | - | | 0.7753 | 40050 | 0.0 | - | | 0.7763 | 40100 | 0.0 | - | | 0.7772 | 40150 | 0.0 | - | | 0.7782 | 40200 | 0.0 | - | | 0.7792 | 40250 | 0.0 | - | | 0.7801 | 40300 | 0.0 | - | | 0.7811 | 40350 | 0.0 | - | | 0.7821 | 40400 | 0.0 | - | | 0.7830 | 40450 | 0.0 | - | | 0.7840 | 40500 | 0.0 | - | | 0.7850 | 40550 | 0.0 | - | | 0.7860 | 40600 | 0.0 | - | | 0.7869 | 40650 | 0.0 | - | | 0.7879 | 40700 | 0.0 | - | | 0.7889 | 40750 | 0.0 | - | | 0.7898 | 40800 | 0.0 | - | | 0.7908 | 40850 | 0.0 | - | | 0.7918 | 40900 | 0.0 | - | | 0.7927 | 40950 | 0.0 | - | | 0.7937 | 41000 | 0.0 | - | | 0.7947 | 41050 | 0.0 | - | | 0.7956 | 41100 | 0.0 | - | | 0.7966 | 41150 | 0.0 | - | | 0.7976 | 41200 | 0.0 | - | | 0.7985 | 41250 | 0.0 | - | | 0.7995 | 41300 | 0.0 | - | | 0.8005 | 41350 | 0.0 | - | | 0.8014 | 41400 | 0.0 | - | | 0.8024 | 41450 | 0.0 | - | | 0.8034 | 41500 | 0.0 | - | | 0.8043 | 41550 | 0.0 | - | | 0.8053 | 41600 | 0.0 | - | | 0.8063 | 41650 | 0.0 | - | | 0.8072 | 41700 | 0.0 | - | | 0.8082 | 41750 | 0.0 | - | | 0.8092 | 41800 | 0.0 | - | | 0.8102 | 41850 | 0.0 | - | | 0.8111 | 41900 | 0.0 | - | | 0.8121 | 41950 | 0.0 | - | | 0.8131 | 42000 | 0.0 | - | | 0.8140 | 42050 | 0.0 | - | | 0.8150 | 42100 | 0.0 | - | | 0.8160 | 42150 | 0.0 | - | | 0.8169 | 42200 | 0.0 | - | | 0.8179 | 42250 | 0.0 | - | | 0.8189 | 42300 | 0.0 | - | | 0.8198 | 42350 | 0.0 | - | | 0.8208 | 42400 | 0.0 | - | | 0.8218 | 42450 | 0.0 | - | | 0.8227 | 42500 | 0.0 | - | | 0.8237 | 42550 | 0.0 | - | | 0.8247 | 42600 | 0.0 | - | | 0.8256 | 42650 | 0.0 | - | | 0.8266 | 42700 | 0.0 | - | | 0.8276 | 42750 | 0.0 | - | | 0.8285 | 42800 | 0.0 | - | | 0.8295 | 42850 | 0.0 | - | | 0.8305 | 42900 | 0.0 | - | | 0.8314 | 42950 | 0.0 | - | | 0.8324 | 43000 | 0.0 | - | | 0.8334 | 43050 | 0.0 | - | | 0.8343 | 43100 | 0.0 | - | | 0.8353 | 43150 | 0.0 | - | | 0.8363 | 43200 | 0.0 | - | | 0.8373 | 43250 | 0.0 | - | | 0.8382 | 43300 | 0.0 | - | | 0.8392 | 43350 | 0.0 | - | | 0.8402 | 43400 | 0.0 | - | | 0.8411 | 43450 | 0.0 | - | | 0.8421 | 43500 | 0.0 | - | | 0.8431 | 43550 | 0.0 | - | | 0.8440 | 43600 | 0.0 | - | | 0.8450 | 43650 | 0.0 | - | | 0.8460 | 43700 | 0.0 | - | | 0.8469 | 43750 | 0.0 | - | | 0.8479 | 43800 | 0.0 | - | | 0.8489 | 43850 | 0.0 | - | | 0.8498 | 43900 | 0.0 | - | | 0.8508 | 43950 | 0.0 | - | | 0.8518 | 44000 | 0.0 | - | | 0.8527 | 44050 | 0.0 | - | | 0.8537 | 44100 | 0.0 | - | | 0.8547 | 44150 | 0.0 | - | | 0.8556 | 44200 | 0.0 | - | | 0.8566 | 44250 | 0.0 | - | | 0.8576 | 44300 | 0.0 | - | | 0.8585 | 44350 | 0.0 | - | | 0.8595 | 44400 | 0.0 | - | | 0.8605 | 44450 | 0.0 | - | | 0.8615 | 44500 | 0.0 | - | | 0.8624 | 44550 | 0.0 | - | | 0.8634 | 44600 | 0.0 | - | | 0.8644 | 44650 | 0.0 | - | | 0.8653 | 44700 | 0.0 | - | | 0.8663 | 44750 | 0.0 | - | | 0.8673 | 44800 | 0.0 | - | | 0.8682 | 44850 | 0.0 | - | | 0.8692 | 44900 | 0.0 | - | | 0.8702 | 44950 | 0.0 | - | | 0.8711 | 45000 | 0.0 | - | | 0.8721 | 45050 | 0.0 | - | | 0.8731 | 45100 | 0.0 | - | | 0.8740 | 45150 | 0.0 | - | | 0.8750 | 45200 | 0.0 | - | | 0.8760 | 45250 | 0.0 | - | | 0.8769 | 45300 | 0.0 | - | | 0.8779 | 45350 | 0.0 | - | | 0.8789 | 45400 | 0.0 | - | | 0.8798 | 45450 | 0.0 | - | | 0.8808 | 45500 | 0.0 | - | | 0.8818 | 45550 | 0.0 | - | | 0.8827 | 45600 | 0.0 | - | | 0.8837 | 45650 | 0.0 | - | | 0.8847 | 45700 | 0.0 | - | | 0.8856 | 45750 | 0.0 | - | | 0.8866 | 45800 | 0.0 | - | | 0.8876 | 45850 | 0.0 | - | | 0.8886 | 45900 | 0.0 | - | | 0.8895 | 45950 | 0.0 | - | | 0.8905 | 46000 | 0.0 | - | | 0.8915 | 46050 | 0.0 | - | | 0.8924 | 46100 | 0.0 | - | | 0.8934 | 46150 | 0.0 | - | | 0.8944 | 46200 | 0.0 | - | | 0.8953 | 46250 | 0.0 | - | | 0.8963 | 46300 | 0.0 | - | | 0.8973 | 46350 | 0.0 | - | | 0.8982 | 46400 | 0.0 | - | | 0.8992 | 46450 | 0.0 | - | | 0.9002 | 46500 | 0.0 | - | | 0.9011 | 46550 | 0.0 | - | | 0.9021 | 46600 | 0.0 | - | | 0.9031 | 46650 | 0.0 | - | | 0.9040 | 46700 | 0.0 | - | | 0.9050 | 46750 | 0.0 | - | | 0.9060 | 46800 | 0.0 | - | | 0.9069 | 46850 | 0.0 | - | | 0.9079 | 46900 | 0.0 | - | | 0.9089 | 46950 | 0.0 | - | | 0.9098 | 47000 | 0.0 | - | | 0.9108 | 47050 | 0.0 | - | | 0.9118 | 47100 | 0.0 | - | | 0.9128 | 47150 | 0.0 | - | | 0.9137 | 47200 | 0.0 | - | | 0.9147 | 47250 | 0.0 | - | | 0.9157 | 47300 | 0.0 | - | | 0.9166 | 47350 | 0.0 | - | | 0.9176 | 47400 | 0.0 | - | | 0.9186 | 47450 | 0.0 | - | | 0.9195 | 47500 | 0.0 | - | | 0.9205 | 47550 | 0.0 | - | | 0.9215 | 47600 | 0.0 | - | | 0.9224 | 47650 | 0.0 | - | | 0.9234 | 47700 | 0.0 | - | | 0.9244 | 47750 | 0.0 | - | | 0.9253 | 47800 | 0.0 | - | | 0.9263 | 47850 | 0.0 | - | | 0.9273 | 47900 | 0.0 | - | | 0.9282 | 47950 | 0.0 | - | | 0.9292 | 48000 | 0.0 | - | | 0.9302 | 48050 | 0.0 | - | | 0.9311 | 48100 | 0.0 | - | | 0.9321 | 48150 | 0.0 | - | | 0.9331 | 48200 | 0.0 | - | | 0.9340 | 48250 | 0.0 | - | | 0.9350 | 48300 | 0.0 | - | | 0.9360 | 48350 | 0.0 | - | | 0.9369 | 48400 | 0.0 | - | | 0.9379 | 48450 | 0.0 | - | | 0.9389 | 48500 | 0.0 | - | | 0.9399 | 48550 | 0.0 | - | | 0.9408 | 48600 | 0.0 | - | | 0.9418 | 48650 | 0.0 | - | | 0.9428 | 48700 | 0.0 | - | | 0.9437 | 48750 | 0.0 | - | | 0.9447 | 48800 | 0.0 | - | | 0.9457 | 48850 | 0.0 | - | | 0.9466 | 48900 | 0.0 | - | | 0.9476 | 48950 | 0.0 | - | | 0.9486 | 49000 | 0.0 | - | | 0.9495 | 49050 | 0.0 | - | | 0.9505 | 49100 | 0.0 | - | | 0.9515 | 49150 | 0.0 | - | | 0.9524 | 49200 | 0.0 | - | | 0.9534 | 49250 | 0.0 | - | | 0.9544 | 49300 | 0.0 | - | | 0.9553 | 49350 | 0.0 | - | | 0.9563 | 49400 | 0.0 | - | | 0.9573 | 49450 | 0.0 | - | | 0.9582 | 49500 | 0.0 | - | | 0.9592 | 49550 | 0.0 | - | | 0.9602 | 49600 | 0.0 | - | | 0.9611 | 49650 | 0.0 | - | | 0.9621 | 49700 | 0.0 | - | | 0.9631 | 49750 | 0.0 | - | | 0.9641 | 49800 | 0.0 | - | | 0.9650 | 49850 | 0.0 | - | | 0.9660 | 49900 | 0.0 | - | | 0.9670 | 49950 | 0.0 | - | | 0.9679 | 50000 | 0.0 | - | | 0.9689 | 50050 | 0.0 | - | | 0.9699 | 50100 | 0.0 | - | | 0.9708 | 50150 | 0.0 | - | | 0.9718 | 50200 | 0.0 | - | | 0.9728 | 50250 | 0.0 | - | | 0.9737 | 50300 | 0.0 | - | | 0.9747 | 50350 | 0.0 | - | | 0.9757 | 50400 | 0.0 | - | | 0.9766 | 50450 | 0.0 | - | | 0.9776 | 50500 | 0.0 | - | | 0.9786 | 50550 | 0.0 | - | | 0.9795 | 50600 | 0.0 | - | | 0.9805 | 50650 | 0.0 | - | | 0.9815 | 50700 | 0.0 | - | | 0.9824 | 50750 | 0.0 | - | | 0.9834 | 50800 | 0.0 | - | | 0.9844 | 50850 | 0.0 | - | | 0.9853 | 50900 | 0.0 | - | | 0.9863 | 50950 | 0.0 | - | | 0.9873 | 51000 | 0.0 | - | | 0.9882 | 51050 | 0.0 | - | | 0.9892 | 51100 | 0.0 | - | | 0.9902 | 51150 | 0.0 | - | | 0.9912 | 51200 | 0.0 | - | | 0.9921 | 51250 | 0.0 | - | | 0.9931 | 51300 | 0.0 | - | | 0.9941 | 51350 | 0.0 | - | | 0.9950 | 51400 | 0.0 | - | | 0.9960 | 51450 | 0.0 | - | | 0.9970 | 51500 | 0.0 | - | | 0.9979 | 51550 | 0.0 | - | | 0.9989 | 51600 | 0.0 | - | | 0.9999 | 51650 | 0.0 | - | ### Framework Versions - Python: 3.10.12 - SetFit: 1.2.0.dev0 - Sentence Transformers: 3.3.1 - Transformers: 4.48.0.dev0 - PyTorch: 2.5.1+cu121 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX ```bibtex @article{https://doi.org/10.48550/arxiv.2209.11055, doi = {10.48550/ARXIV.2209.11055}, url = {https://arxiv.org/abs/2209.11055}, author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, title = {Efficient Few-Shot Learning Without Prompts}, publisher = {arXiv}, year = {2022}, copyright = {Creative Commons Attribution 4.0 International} } ```