ccdv commited on
Commit
63332e7
·
0 Parent(s):
.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - summarization
4
+ - bart
5
+ - long context
6
+ language:
7
+ - fr
8
+ pipeline_tag: fill-mask
9
+ ---
10
+
11
+ # LSG model
12
+ **Transformers >= 4.18.0**\
13
+ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\
14
+ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)**
15
+
16
+ * [Usage](#usage)
17
+ * [Parameters](#parameters)
18
+ * [Sparse selection type](#sparse-selection-type)
19
+ * [Tasks](#tasks)
20
+
21
+ This model is adapted from [BARThez](https://huggingface.co/moussaKam/barthez) for encoder-decoder tasks without additional pretraining. It uses the same number of parameters/layers and the same tokenizer.
22
+
23
+
24
+ This model can handle long sequences but faster and more efficiently than Longformer (LED) or BigBird (Pegasus) from the hub and relies on Local + Sparse + Global attention (LSG).
25
+
26
+
27
+ The model requires sequences whose length is a multiple of the block size. The model is "adaptive" and automatically pads the sequences if needed (adaptive=True in config). It is however recommended, thanks to the tokenizer, to truncate the inputs (truncation=True) and optionally to pad with a multiple of the block size (pad_to_multiple_of=...). \
28
+
29
+ Implemented in PyTorch.
30
+
31
+ ![attn](attn.png)
32
+
33
+ ## Usage
34
+ The model relies on a custom modeling file, you need to add trust_remote_code=True to use it.
35
+
36
+ ```python:
37
+ from transformers import AutoModel, AutoTokenizer
38
+
39
+ model = AutoModel.from_pretrained("ccdv/lsg-barthez-4096", trust_remote_code=True)
40
+ tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-barthez-4096")
41
+ ```
42
+
43
+ ## Parameters
44
+ You can change various parameters like :
45
+ * the number of global tokens (num_global_tokens=1)
46
+ * local block size (block_size=128)
47
+ * sparse block size (sparse_block_size=128)
48
+ * sparsity factor (sparsity_factor=2)
49
+ * see config.json file
50
+
51
+ Default parameters work well in practice. If you are short on memory, reduce block sizes, increase sparsity factor and remove dropout in the attention score matrix.
52
+
53
+ ```python:
54
+ model = AutoModel.from_pretrained("ccdv/lsg-barthez-4096",
55
+ trust_remote_code=True,
56
+ num_global_tokens=16,
57
+ block_size=64,
58
+ sparse_block_size=64,
59
+ sparsity_factor=4,
60
+ attention_probs_dropout_prob=0.0
61
+ )
62
+ ```
63
+
64
+ ## Sparse selection type
65
+
66
+ There are 5 different sparse selection patterns. The best type is task dependent. \
67
+ Note that for sequences with length < 2*block_size, the type has no effect.
68
+
69
+ * sparsity_type="norm", select highest norm tokens
70
+ * Works best for a small sparsity_factor (2 to 4)
71
+ * Additional parameters:
72
+ * None
73
+ * sparsity_type="pooling", use average pooling to merge tokens
74
+ * Works best for a small sparsity_factor (2 to 4)
75
+ * Additional parameters:
76
+ * None
77
+ * sparsity_type="lsh", use the LSH algorithm to cluster similar tokens
78
+ * Works best for a large sparsity_factor (4+)
79
+ * LSH relies on random projections, thus inference may differ slightly with different seeds
80
+ * Additional parameters:
81
+ * lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids
82
+ * sparsity_type="stride", use a striding mecanism per head
83
+ * Each head will use different tokens strided by sparsify_factor
84
+ * Not recommended if sparsify_factor > num_heads
85
+ * sparsity_type="block_stride", use a striding mecanism per head
86
+ * Each head will use block of tokens strided by sparsify_factor
87
+ * Not recommended if sparsify_factor > num_heads
88
+
89
+ ## Tasks
90
+ Seq2Seq example for summarization:
91
+ ```python:
92
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
93
+
94
+ model = AutoModelForSeq2SeqLM.from_pretrained("ccdv/lsg-barthez-4096",
95
+ trust_remote_code=True,
96
+ pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder
97
+ )
98
+ tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-barthez-4096")
99
+
100
+ SENTENCE = "This is a test sequence to test the model. " * 300
101
+ token_ids = tokenizer(
102
+ SENTENCE,
103
+ return_tensors="pt",
104
+ padding="max_length", # Optional but recommended
105
+ truncation=True # Optional but recommended
106
+ )
107
+ output = model(**token_ids)
108
+ ```
109
+
110
+
111
+ Classification example:
112
+ ```python:
113
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
114
+
115
+ model = AutoModelForSequenceClassification.from_pretrained("ccdv/lsg-barthez-4096",
116
+ trust_remote_code=True,
117
+ pass_global_tokens_to_decoder=True, # Pass encoder global tokens to decoder
118
+ )
119
+ tokenizer = AutoTokenizer.from_pretrained("ccdv/lsg-barthez-4096")
120
+
121
+ SENTENCE = "This is a test sequence to test the model. " * 300
122
+ token_ids = tokenizer(
123
+ SENTENCE,
124
+ return_tensors="pt",
125
+ #pad_to_multiple_of=... # Optional
126
+ truncation=True
127
+ )
128
+ output = model(**token_ids)
129
+
130
+ > SequenceClassifierOutput(loss=None, logits=tensor([[-0.3051, -0.1762]], grad_fn=<AddmmBackward>), hidden_states=None, attentions=None)
131
+ ```
132
+
133
+
134
+ ## Conversion script
135
+
136
+ To convert a BERT, RoBERTa or BART checkpoint to LSG, see this [repo](https://github.com/ccdv-ai/convert_checkpoint_to_lsg).
137
+
138
+
139
+ **BARThez**
140
+ ```
141
+ @article{eddine2020barthez,
142
+ title={BARThez: a Skilled Pretrained French Sequence-to-Sequence Model},
143
+ author={Eddine, Moussa Kamal and Tixier, Antoine J-P and Vazirgiannis, Michalis},
144
+ journal={arXiv preprint arXiv:2010.12321},
145
+ year={2020}
146
+ }
147
+ ```
attn.png ADDED
config.json ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ccdv/lsg-barthez-4096",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "adaptive": true,
6
+ "add_bias_logits": false,
7
+ "add_final_layer_norm": true,
8
+ "architectures": [
9
+ "LSGMBartForConditionalGeneration"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "auto_map": {
13
+ "AutoConfig": "modeling_lsg_barthez.LSGMBartConfig",
14
+ "AutoModel": "modeling_lsg_barthez.LSGMBartModel",
15
+ "AutoModelForCausalLM": "modeling_lsg_barthez.LSGMBartForCausalLM",
16
+ "AutoModelForQuestionAnswering": "modeling_lsg_barthez.LSGMBartForQuestionAnswering",
17
+ "AutoModelForSeq2SeqLM": "modeling_lsg_barthez.LSGMBartForConditionalGeneration",
18
+ "AutoModelForSequenceClassification": "modeling_lsg_barthez.LSGMBartForSequenceClassification"
19
+ },
20
+ "base_model_prefix": "lsg",
21
+ "block_size": 128,
22
+ "bos_token_id": 0,
23
+ "classif_dropout": 0.1,
24
+ "classifier_dropout": 0.0,
25
+ "d_model": 768,
26
+ "decoder_attention_heads": 12,
27
+ "decoder_ffn_dim": 3072,
28
+ "decoder_layerdrop": 0.0,
29
+ "decoder_layers": 6,
30
+ "decoder_start_token_id": 2,
31
+ "do_blenderbot_90_layernorm": false,
32
+ "dropout": 0.1,
33
+ "early_stopping": true,
34
+ "encoder_attention_heads": 12,
35
+ "encoder_ffn_dim": 3072,
36
+ "encoder_layerdrop": 0.0,
37
+ "encoder_layers": 6,
38
+ "eos_token_id": 2,
39
+ "extra_pos_embeddings": 2,
40
+ "force_bos_token_to_be_generated": false,
41
+ "forced_eos_token_id": 2,
42
+ "id2label": {
43
+ "0": "LABEL_0",
44
+ "1": "LABEL_1",
45
+ "2": "LABEL_2"
46
+ },
47
+ "init_std": 0.02,
48
+ "is_encoder_decoder": true,
49
+ "label2id": {
50
+ "LABEL_0": 0,
51
+ "LABEL_1": 1,
52
+ "LABEL_2": 2
53
+ },
54
+ "lsh_num_pre_rounds": 1,
55
+ "max_position_embeddings": 4096,
56
+ "model_type": "mbart",
57
+ "no_repeat_ngram_size": 3,
58
+ "normalize_before": true,
59
+ "normalize_embedding": true,
60
+ "num_beams": 4,
61
+ "num_global_tokens": 1,
62
+ "num_hidden_layers": 6,
63
+ "pad_token_id": 1,
64
+ "pass_global_tokens_to_decoder": true,
65
+ "pool_with_global": true,
66
+ "scale_embedding": false,
67
+ "sparse_block_size": 128,
68
+ "sparsity_factor": 2,
69
+ "sparsity_type": "norm",
70
+ "static_position_embeddings": false,
71
+ "tokenizer_class": "BarthezTokenizer",
72
+ "torch_dtype": "float32",
73
+ "transformers_version": "4.19.2",
74
+ "use_cache": true,
75
+ "vocab_size": 50002
76
+ }
modeling_lsg_barthez.py ADDED
@@ -0,0 +1,1117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import warn
2
+ import torch
3
+ from transformers.models.bart.modeling_bart import *
4
+ from transformers.models.bart.modeling_bart import _expand_mask
5
+ import torch.nn as nn
6
+ from torch.nn import BCEWithLogitsLoss
7
+ import sys
8
+
9
+ AUTO_MAP = {
10
+ "AutoModel": "modeling_lsg_barthez.LSGMBartModel",
11
+ "AutoModelForCausalLM": "modeling_lsg_barthez.LSGMBartForCausalLM",
12
+ "AutoModelForQuestionAnswering": "modeling_lsg_barthez.LSGMBartForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "modeling_lsg_barthez.LSGMBartForSequenceClassification",
14
+ "AutoModelForSeq2SeqLM": "modeling_lsg_barthez.LSGMBartForConditionalGeneration"
15
+ }
16
+
17
+ class LSGMBartConfig(BartConfig):
18
+ """
19
+ This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
20
+ documentation alongside usage examples.
21
+ """
22
+
23
+ base_model_prefix = "lsg"
24
+ model_type = "mbart"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
27
+
28
+ def __init__(
29
+ self,
30
+ adaptive=True,
31
+ base_model_prefix="lsg",
32
+ block_size=128,
33
+ lsh_num_pre_rounds=1,
34
+ num_global_tokens=1,
35
+ pass_global_tokens_to_decoder=True,
36
+ pool_with_global=True,
37
+ sparse_block_size=128,
38
+ sparsity_factor=2,
39
+ sparsity_type="norm",
40
+ **kwargs
41
+ ):
42
+ """Constructs LSGConfig."""
43
+ super().__init__(**kwargs)
44
+
45
+ self.adaptive = adaptive
46
+ self.auto_map = AUTO_MAP
47
+ self.base_model_prefix = base_model_prefix
48
+ self.block_size = block_size
49
+ self.lsh_num_pre_rounds = lsh_num_pre_rounds
50
+ self.num_global_tokens = num_global_tokens
51
+ self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
52
+ self.pool_with_global = pool_with_global
53
+ self.sparse_block_size = sparse_block_size
54
+ self.sparsity_factor = sparsity_factor
55
+ self.sparsity_type = sparsity_type
56
+
57
+ if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
58
+ logger.warning(
59
+ "[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], setting sparsity_type=None, computation will skip sparse attention")
60
+ self.sparsity_type = None
61
+
62
+ if self.sparsity_type in ["stride", "block_stride"]:
63
+ if self.sparsity_factor > self.encoder_attention_heads:
64
+ logger.warning(
65
+ "[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity"
66
+ )
67
+
68
+ if self.num_global_tokens < 1:
69
+ logger.warning(
70
+ "[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
71
+ )
72
+ self.num_global_tokens = 1
73
+ elif self.num_global_tokens > 512:
74
+ logger.warning(
75
+ "[WARNING CONFIG]: num_global_tokens > 512 is not compatible, setting num_global_tokens=512"
76
+ )
77
+ self.num_global_tokens = 512
78
+
79
+ if self.sparsity_factor > 0:
80
+ assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
81
+ assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
82
+
83
+
84
+ class BaseSelfAttention(nn.Module):
85
+
86
+ def __init__(
87
+ self,
88
+ embed_dim,
89
+ num_heads,
90
+ dropout=0.0,
91
+ is_decoder=False,
92
+ bias=True,
93
+ ):
94
+
95
+ super().__init__()
96
+ self.embed_dim = embed_dim
97
+ self.num_heads = num_heads
98
+ self.dropout = dropout
99
+ self.head_dim = embed_dim // num_heads
100
+
101
+ if (self.head_dim * num_heads) != self.embed_dim:
102
+ raise ValueError(
103
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
104
+ f" and `num_heads`: {num_heads})."
105
+ )
106
+ self.scaling = self.head_dim ** -0.5
107
+ self.is_decoder = is_decoder
108
+
109
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
110
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
111
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
112
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
113
+
114
+ def transpose_for_scores(self, x):
115
+ new_x_shape = x.size()[:-1] + (
116
+ self.num_heads,
117
+ self.head_dim,
118
+ )
119
+ x = x.view(*new_x_shape)
120
+ return x.permute(0, 2, 1, 3)
121
+
122
+ def reshape_output(self, context_layer):
123
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
124
+ new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
125
+ return context_layer.view(*new_context_layer_shape)
126
+
127
+ def project_QKV(self, hidden_states):
128
+
129
+ query_layer = self.transpose_for_scores(self.q_proj(hidden_states))
130
+ key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
131
+ value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
132
+ return query_layer, key_layer, value_layer
133
+
134
+
135
+ class BaseAttentionProduct(nn.Module):
136
+
137
+ def __init__(self, config):
138
+ """
139
+ Compute attention: softmax(Q @ K.T) @ V
140
+ """
141
+ super().__init__()
142
+ self.dropout = nn.Dropout(config.attention_dropout)
143
+
144
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
145
+
146
+ d = query_layer.shape[-1]
147
+
148
+ # Take the dot product between "query" and "key" to get the raw attention scores.
149
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
150
+
151
+ del query_layer
152
+ del key_layer
153
+
154
+ if attention_mask is not None:
155
+ # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
156
+ attention_scores = attention_scores + attention_mask
157
+ del attention_mask
158
+
159
+ # Normalize the attention scores to probabilities.
160
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
161
+
162
+ # This is actually dropping out entire tokens to attend to, which might
163
+ # seem a bit unusual, but is taken from the original Transformer paper.
164
+ context_layer = self.dropout(attention_probs) @ value_layer
165
+
166
+ return context_layer
167
+
168
+
169
+ class LSGAttentionProduct(nn.Module):
170
+
171
+ def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4):
172
+ """
173
+ Compute block or overlapping blocks attention products
174
+ """
175
+ super().__init__()
176
+
177
+ self.block_size = block_size
178
+ self.sparse_block_size = sparse_block_size
179
+ self.sparsity_factor = sparsity_factor
180
+
181
+ if self.block_size is None:
182
+ self.block_size = config.block_size
183
+
184
+ if self.sparse_block_size is None:
185
+ self.sparse_block_size = config.sparse_block_size
186
+
187
+ # Shape of blocks
188
+ self.local_shapes = (self.block_size*3, self.block_size)
189
+ if self.sparse_block_size and self.sparsity_factor > 0:
190
+ self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
191
+
192
+ self.attention = BaseAttentionProduct(config)
193
+
194
+ def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
195
+
196
+ # Build local tokens
197
+ local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
198
+ del hidden_states
199
+
200
+ # Build sparse tokens
201
+ if sparse_hidden_states is not None:
202
+ sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
203
+
204
+ return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
205
+
206
+ def forward(
207
+ self,
208
+ query_layer,
209
+ key_layer,
210
+ value_layer,
211
+ attention_mask=None,
212
+ sparse_key=None,
213
+ sparse_value=None,
214
+ sparse_mask=None,
215
+ global_key=None,
216
+ global_value=None,
217
+ global_mask=None
218
+ ):
219
+
220
+ # Input batch, heads, length, hidden_size
221
+ n, h, t, d = query_layer.size()
222
+ n_blocks = t // self.block_size
223
+ assert t % self.block_size == 0
224
+
225
+ key_layer = self.build_lsg_inputs(
226
+ key_layer,
227
+ sparse_key,
228
+ global_key
229
+ )
230
+ del sparse_key
231
+ del global_key
232
+
233
+ value_layer = self.build_lsg_inputs(
234
+ value_layer,
235
+ sparse_value,
236
+ global_value
237
+ )
238
+ del sparse_value
239
+ del global_value
240
+
241
+ attention_mask = self.build_lsg_inputs(
242
+ attention_mask,
243
+ sparse_mask,
244
+ global_mask.transpose(-1, -2),
245
+ is_attn_mask=True
246
+ ).transpose(-1, -2)
247
+ del sparse_mask
248
+ del global_mask
249
+
250
+ # expect (..., t, d) shape
251
+ # Compute attention
252
+ context_layer = self.attention(
253
+ query_layer=self.chunk(query_layer, n_blocks),
254
+ key_layer=key_layer,
255
+ value_layer=value_layer,
256
+ attention_mask=attention_mask
257
+ )
258
+
259
+ return context_layer.reshape(n, h, -1, d)
260
+
261
+ def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
262
+
263
+ size, step = self.local_shapes
264
+ s = (size - step) // 2
265
+
266
+ # Pad before block reshaping
267
+ if is_attn_mask:
268
+ pad_value = -10000
269
+ hidden_states = hidden_states.transpose(-1, -2)
270
+ else:
271
+ pad_value = 0
272
+
273
+ hidden_states = torch.nn.functional.pad(
274
+ hidden_states.transpose(-1, -2),
275
+ pad=(s, s),
276
+ value=pad_value
277
+ ).transpose(-1, -2)
278
+
279
+ # Make blocks
280
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
281
+
282
+ return hidden_states
283
+
284
+ def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
285
+
286
+ size, step = self.sparse_shapes
287
+
288
+ # In case of odd case
289
+ odd_offset = (step % 2)
290
+
291
+ # n, h, t, d*2 + 1
292
+ size = size*2
293
+ s = (size - step) // 2 + odd_offset
294
+
295
+ # Pad before block reshaping
296
+ if is_attn_mask:
297
+ pad_value = -10000
298
+ hidden_states = hidden_states.transpose(-1, -2)
299
+ else:
300
+ pad_value = 0
301
+
302
+ hidden_states = torch.nn.functional.pad(
303
+ hidden_states.transpose(-1, -2),
304
+ pad=(s, s),
305
+ value=pad_value
306
+ ).transpose(-1, -2)
307
+
308
+ # Make blocks
309
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
310
+
311
+ # Fix case where block_size == sparsify_factor
312
+ if odd_offset:
313
+ hidden_states = hidden_states[..., :-1, :, :]
314
+
315
+ # Indexes for selection
316
+ u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
317
+ s = self.sparse_block_size
318
+
319
+ u_ = u + odd_offset
320
+ return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
321
+
322
+ def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
323
+
324
+ n, h, b, t, d = x_local.size()
325
+ x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
326
+ if x_sparse is not None:
327
+ return torch.cat([x_global, x_sparse, x_local], dim=dim)
328
+ return torch.cat([x_global, x_local], dim=dim)
329
+
330
+ def chunk(self, x, n_blocks):
331
+
332
+ t, d = x.size()[-2:]
333
+ return x.reshape(*x.size()[:-2], n_blocks, -1, d)
334
+
335
+
336
+ class LSGMBartEncoderAttention(BaseSelfAttention):
337
+ '''
338
+ Compute local attention with overlapping blocs
339
+ Use global attention for tokens with highest norm
340
+ '''
341
+ def __init__(
342
+ self,
343
+ config,
344
+ embed_dim,
345
+ num_heads,
346
+ dropout
347
+ ):
348
+
349
+ super().__init__(embed_dim, num_heads, dropout)
350
+
351
+ self.block_size = config.block_size
352
+ self.sparse_block_size = config.sparse_block_size
353
+ self.num_global_tokens = config.num_global_tokens
354
+ self.sparsity_factor = config.sparsity_factor
355
+
356
+ self.attention = LSGAttentionProduct(
357
+ config,
358
+ block_size=config.block_size,
359
+ sparse_block_size=config.sparse_block_size,
360
+ sparsity_factor=self.sparsity_factor,
361
+ )
362
+
363
+ self.full_attention = BaseAttentionProduct(config)
364
+
365
+ sparse_functions = {
366
+ "norm": self.get_sparse_tokens_with_norm,
367
+ "pooling": self.get_sparse_tokens_with_pooling,
368
+ "lsh": self.get_sparse_tokens_with_lsh,
369
+ "stride": self.get_sparse_tokens_with_stride,
370
+ "block_stride": self.get_sparse_tokens_with_block_stride,
371
+ }
372
+
373
+ self.sparsity_type = config.sparsity_type
374
+ self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
375
+
376
+ if config.sparsity_type == "lsh":
377
+ self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
378
+
379
+ def get_sparse_tokens_with_norm(self, keys, values, mask):
380
+
381
+ if self.sparsity_factor == 1:
382
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
383
+
384
+ with torch.no_grad():
385
+
386
+ block_size = min(self.block_size, self.sparse_block_size)
387
+ key_norm = keys.detach().norm(dim=-1, keepdim=True)
388
+ key_norm = key_norm * ~mask.transpose(-1, -2).bool()
389
+ key_norm = self.chunk(key_norm, block_size)
390
+
391
+ n, h, b, t, d = key_norm.size()
392
+
393
+ idx = key_norm.argsort(dim=-2)
394
+ del key_norm
395
+ idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
396
+
397
+ split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
398
+ sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
399
+
400
+ d = keys.size()[-1]
401
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
402
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
403
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
404
+
405
+ return keys, values, mask
406
+
407
+ def get_sparse_tokens_with_pooling(self, keys, values, mask):
408
+
409
+ if self.sparsity_factor == 1:
410
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
411
+
412
+ keys = self.chunk(keys, self.sparsity_factor)
413
+ values = self.chunk(values, self.sparsity_factor)
414
+
415
+ n, h, b, t, d = keys.size()
416
+ mask = mask.reshape(n, 1, b, 1, t)
417
+ mask = ~mask.transpose(-1, -2).bool()
418
+
419
+ keys = keys * mask
420
+ values = values * mask
421
+
422
+ mask = mask.sum(dim=-2)
423
+ keys = keys.sum(dim=-2) / (mask + 1e-6)
424
+ values = values.sum(dim=-2) / (mask + 1e-6)
425
+
426
+ mask = - (1. - mask.clamp(0, 1)) * 1e4
427
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
428
+
429
+ def get_sparse_tokens_with_stride(self, keys, values, mask):
430
+
431
+ if self.sparsity_factor == 1:
432
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
433
+
434
+ n, h, t, d = keys.size()
435
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
436
+ sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
437
+ sparse_idx = sparse_idx.expand(n, h, -1, 1)
438
+
439
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
440
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
441
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
442
+
443
+ return keys, values, mask
444
+
445
+ def get_sparse_tokens_with_block_stride(self, keys, values, mask):
446
+
447
+ if self.sparsity_factor == 1:
448
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
449
+
450
+ n, h, t, d = keys.size()
451
+
452
+ t, b = self.block_size, t // self.block_size
453
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
454
+ sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
455
+ sparse_idx = (sparse_idx % t)
456
+ sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
457
+ sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
458
+
459
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
460
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
461
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
462
+
463
+ return keys, values, mask
464
+
465
+ def get_sparse_tokens_with_lsh(self, keys, values, mask):
466
+
467
+ if self.sparsity_factor == 1:
468
+ return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
469
+
470
+ block_size = min(self.block_size, self.sparse_block_size)
471
+ keys = self.chunk(keys, block_size)
472
+ values = self.chunk(values, block_size)
473
+
474
+ n, h, b, t, d = keys.size()
475
+ mask = mask.reshape(n, 1, b, 1, t)
476
+ mask = ~mask.transpose(-1, -2).bool()
477
+
478
+ keys = keys * mask
479
+ values = values * mask
480
+ mask = mask.expand(-1, h, -1, -1, -1).float()
481
+
482
+ extra_factor = 1
483
+
484
+ for _ in range(self.lsh_num_pre_rounds):
485
+ keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
486
+
487
+ keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
488
+ keys /= mask + 1e-8
489
+ values /= mask + 1e-8
490
+
491
+ mask = -10000 * (1. - mask.clamp(0, 1))
492
+
493
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
494
+
495
+ def lsh_round(self, keys, values, mask, output_size):
496
+
497
+ with torch.no_grad():
498
+
499
+ n_hashes = output_size // 2
500
+ n, h, b, t, d = keys.size()
501
+ binary_mask = mask.clamp(0, 1)
502
+
503
+ indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
504
+ indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
505
+
506
+ n, h, b, t, d = keys.size()
507
+
508
+ x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
509
+ mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
510
+ keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
511
+ values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
512
+ mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
513
+
514
+ return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
515
+
516
+ def forward(
517
+ self,
518
+ hidden_states,
519
+ attention_mask=None,
520
+ layer_head_mask=None,
521
+ output_attentions=False
522
+ ):
523
+
524
+ query_layer, key_layer, value_layer = self.project_QKV(hidden_states)
525
+ outputs = self.not_causal_forward(
526
+ query_layer,
527
+ key_layer,
528
+ value_layer,
529
+ attention_mask=attention_mask[:, :, :1, :],
530
+ head_mask=layer_head_mask,
531
+ output_attentions=output_attentions
532
+ )
533
+
534
+ return self.out_proj(outputs), None, None
535
+
536
+ def not_causal_forward(
537
+ self,
538
+ query_layer,
539
+ key_layer,
540
+ value_layer,
541
+ attention_mask=None,
542
+ head_mask=None,
543
+ output_attentions=False,
544
+ ):
545
+
546
+ n, h, t, d = query_layer.size()
547
+
548
+ # Cat global mask
549
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
550
+
551
+ # Use normal attention if local attention covers every tokens
552
+ if t <= 2 * self.block_size + self.num_global_tokens:
553
+ context_layer = self.full_attention(
554
+ query_layer=query_layer,
555
+ key_layer=key_layer,
556
+ value_layer=value_layer,
557
+ attention_mask=attention_mask
558
+ )
559
+
560
+ if head_mask is not None:
561
+ context_layer = context_layer * head_mask[:, :, :1, :1]
562
+ return self.reshape_output(context_layer)
563
+
564
+ # Split input into global tokens and other tokens
565
+ split = (self.num_global_tokens, t - self.num_global_tokens)
566
+ global_query, query_layer = query_layer.split(split, dim=-2)
567
+
568
+ # Get global_attention
569
+ bos = self.full_attention(
570
+ query_layer=global_query,
571
+ key_layer=key_layer,
572
+ value_layer=value_layer,
573
+ attention_mask=attention_mask
574
+ )
575
+
576
+ # Split K Q M on global and non global
577
+ global_key, key_layer = key_layer.split(split, dim=-2)
578
+ global_value, value_layer = value_layer.split(split, dim=-2)
579
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
580
+
581
+ n, h, t, d = key_layer.size()
582
+
583
+ # Get sparse idx
584
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
585
+
586
+ if self.sparse_block_size and self.sparsity_factor > 0:
587
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
588
+
589
+ # Expand masks on heads
590
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
591
+ global_mask = global_mask.expand(-1, h, -1, -1)
592
+
593
+ # Compute dot product attention
594
+ context_layer = self.attention(
595
+ query_layer,
596
+ key_layer,
597
+ value_layer,
598
+ attention_mask,
599
+ sparse_key=sparse_key,
600
+ sparse_value=sparse_value,
601
+ sparse_mask=sparse_mask,
602
+ global_key=global_key,
603
+ global_value=global_value,
604
+ global_mask=global_mask
605
+ )
606
+
607
+ # Merge global and local-sparse tokens
608
+ context_layer = torch.cat([bos, context_layer], dim=-2)
609
+ if head_mask is not None:
610
+ context_layer = context_layer * head_mask[:, :, :1, :1]
611
+ context_layer = self.reshape_output(context_layer)
612
+
613
+ return context_layer
614
+
615
+ def chunk(self, x, chunk_size):
616
+
617
+ n, h, t, d = x.size()
618
+ return x.reshape(n, h, -1, chunk_size, d)
619
+
620
+
621
+ class LSGMBartEncoderLayer(BartEncoderLayer):
622
+
623
+ def __init__(self, config):
624
+
625
+ super().__init__(config)
626
+ self.self_attn = LSGMBartEncoderAttention(
627
+ config=config,
628
+ embed_dim=self.embed_dim,
629
+ num_heads=config.encoder_attention_heads,
630
+ dropout=config.attention_dropout,
631
+ )
632
+
633
+
634
+ class LSGMBartDecoderLayer(BartDecoderLayer):
635
+
636
+ def __init__(self, config):
637
+
638
+ super().__init__(config)
639
+
640
+
641
+ class LSGMBartClassificationHead(BartClassificationHead):
642
+ """Head for sentence-level classification tasks."""
643
+
644
+ def __init__(
645
+ self,
646
+ input_dim,
647
+ inner_dim,
648
+ num_classes,
649
+ pooler_dropout,
650
+ ):
651
+
652
+ super().__init__(input_dim, inner_dim, num_classes, pooler_dropout)
653
+
654
+
655
+ class LSGMBartPretrainedModel(BartPretrainedModel):
656
+
657
+ config_class = LSGMBartConfig
658
+
659
+ def _set_gradient_checkpointing(self, module, value=False):
660
+ print(isinstance(module, (BartDecoder, BartEncoder, LSGMBartDecoder, LSGMBartEncoder)))
661
+ if isinstance(module, (BartDecoder, BartEncoder, LSGMBartDecoder, LSGMBartEncoder)):
662
+ module.gradient_checkpointing = value
663
+
664
+
665
+ class PretrainedLSGMBartModel(LSGMBartPretrainedModel):
666
+
667
+ def __init_subclass__(self):
668
+ warnings.warn(
669
+ "The class `PretrainedBartModel` has been depreciated, please use `LSGMBartPretrainedModel` instead.",
670
+ FutureWarning,
671
+ )
672
+
673
+
674
+ class LSGMBartEncoder(LSGMBartPretrainedModel, BartEncoder):
675
+ """
676
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
677
+ :class:`BartEncoderLayer`.
678
+ Args:
679
+ config: BartConfig
680
+ embed_tokens (nn.Embedding): output embedding
681
+ """
682
+
683
+ def __init__(self, config, embed_tokens=None):
684
+
685
+ super().__init__(config)
686
+ self.dropout = config.dropout
687
+ self.layerdrop = config.encoder_layerdrop
688
+
689
+ embed_dim = config.d_model
690
+ self.padding_idx = config.pad_token_id
691
+ self.max_source_positions = config.max_position_embeddings
692
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
693
+
694
+ if embed_tokens is not None:
695
+ self.embed_tokens = embed_tokens
696
+ else:
697
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
698
+
699
+ self.embed_positions = BartLearnedPositionalEmbedding(
700
+ config.max_position_embeddings,
701
+ embed_dim,
702
+ )
703
+ self.layers = nn.ModuleList([LSGMBartEncoderLayer(config) for _ in range(config.encoder_layers)])
704
+ self.layernorm_embedding = nn.LayerNorm(embed_dim)
705
+
706
+ #
707
+ assert hasattr(config, "num_global_tokens")
708
+ self.num_global_tokens = config.num_global_tokens
709
+ self.pad_idx = config.pad_token_id
710
+
711
+ assert hasattr(config, "block_size") and hasattr(config, "adaptive")
712
+ self.block_size = config.block_size
713
+ self.adaptive = config.adaptive
714
+ self.pool_with_global = config.pool_with_global
715
+ self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
716
+
717
+ self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model)
718
+
719
+ self.gradient_checkpointing = False
720
+
721
+ # Initialize weights and apply final processing
722
+ self.post_init()
723
+
724
+ def forward(self,
725
+ input_ids=None,
726
+ attention_mask=None,
727
+ head_mask=None,
728
+ inputs_embeds=None,
729
+ output_attentions=None,
730
+ output_hidden_states=None,
731
+ return_dict=None
732
+ ):
733
+
734
+
735
+ inputs_ = input_ids if input_ids is not None else inputs_embeds
736
+ n, t = inputs_.size()[:2]
737
+
738
+ if attention_mask is None:
739
+ attention_mask = torch.ones(n, t, device=inputs_.device)
740
+
741
+ b = self.block_size * 2
742
+ pad = t % self.block_size
743
+
744
+ # Check if t is multiple of block_size and pad
745
+ if self.adaptive and t > b and pad > 0:
746
+ pad_length = self.block_size - pad
747
+ if input_ids is not None:
748
+ input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
749
+ else:
750
+ inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
751
+ attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
752
+
753
+ n, t_ = attention_mask.size()
754
+
755
+ encoder_outputs = self.forward_with_adaptive(
756
+ input_ids=input_ids,
757
+ attention_mask=attention_mask,
758
+ head_mask=head_mask,
759
+ inputs_embeds=inputs_embeds,
760
+ output_attentions=output_attentions,
761
+ output_hidden_states=output_hidden_states,
762
+ return_dict=return_dict,
763
+ )
764
+
765
+ context = encoder_outputs[0]
766
+ diff = t - t_
767
+
768
+ if self.pass_global_tokens_to_decoder:
769
+ offset = self.num_global_tokens
770
+ else:
771
+ if self.pool_with_global:
772
+ context[:, self.num_global_tokens] = context[:, 0]
773
+ context = context[..., self.num_global_tokens:, :]
774
+ offset = 0
775
+
776
+ # Adapt sequence to initial shape
777
+ if diff < 0:
778
+ context = context[:, :t + offset]
779
+
780
+ if return_dict:
781
+ encoder_outputs.last_hidden_state = context
782
+ else:
783
+ encoder_outputs = (context, ) + encoder_outputs[1:]
784
+
785
+ return encoder_outputs
786
+
787
+ def forward_with_adaptive(
788
+ self,
789
+ input_ids=None,
790
+ attention_mask=None,
791
+ head_mask=None,
792
+ inputs_embeds=None,
793
+ output_attentions=None,
794
+ output_hidden_states=None,
795
+ return_dict=None,
796
+ ):
797
+
798
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
799
+ output_hidden_states = (
800
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
801
+ )
802
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
803
+
804
+ # retrieve input_ids and inputs_embeds
805
+ if input_ids is not None and inputs_embeds is not None:
806
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
807
+ elif input_ids is not None:
808
+ input_shape = input_ids.size()
809
+ input_ids = input_ids.view(-1, input_shape[-1])
810
+ elif inputs_embeds is not None:
811
+ input_shape = inputs_embeds.size()[:-1]
812
+ else:
813
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
814
+
815
+ if inputs_embeds is None:
816
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
817
+
818
+ embed_pos = self.embed_positions(input_shape)
819
+ hidden_states = inputs_embeds + embed_pos
820
+
821
+ # Add global tokens
822
+ n, t, d = hidden_states.size()
823
+ global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1)
824
+ hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2)
825
+
826
+ hidden_states = self.layernorm_embedding(hidden_states)
827
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
828
+
829
+ # expand attention_mask
830
+ if attention_mask is not None:
831
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
832
+ attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
833
+
834
+ encoder_states = () if output_hidden_states else None
835
+ all_attentions = () if output_attentions else None
836
+
837
+ # check if head_mask has a correct number of layers specified if desired
838
+ if head_mask is not None:
839
+ if head_mask.size()[0] != (len(self.layers)):
840
+ raise ValueError(
841
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
842
+ )
843
+
844
+ for idx, encoder_layer in enumerate(self.layers):
845
+ if output_hidden_states:
846
+ encoder_states = encoder_states + (hidden_states,)
847
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
848
+ dropout_probability = random.uniform(0, 1)
849
+ if self.training and (dropout_probability < self.layerdrop): # skip the layer
850
+ layer_outputs = (None, None)
851
+ else:
852
+ if self.gradient_checkpointing and self.training:
853
+
854
+ def create_custom_forward(module):
855
+ def custom_forward(*inputs):
856
+ return module(*inputs, output_attentions)
857
+
858
+ return custom_forward
859
+
860
+ layer_outputs = torch.utils.checkpoint.checkpoint(
861
+ create_custom_forward(encoder_layer),
862
+ hidden_states,
863
+ attention_mask,
864
+ (head_mask[idx] if head_mask is not None else None),
865
+ )
866
+ else:
867
+ layer_outputs = encoder_layer(
868
+ hidden_states,
869
+ attention_mask,
870
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
871
+ output_attentions=output_attentions,
872
+ )
873
+
874
+ hidden_states = layer_outputs[0]
875
+
876
+ if output_attentions:
877
+ all_attentions = all_attentions + (layer_outputs[1],)
878
+
879
+ if output_hidden_states:
880
+ encoder_states = encoder_states + (hidden_states,)
881
+
882
+ if not return_dict:
883
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
884
+ return BaseModelOutput(
885
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
886
+ )
887
+
888
+
889
+ class LSGMBartDecoder(BartDecoder, LSGMBartPretrainedModel):
890
+ """
891
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGMBartDecoderLayer`
892
+ Args:
893
+ config: BartConfig
894
+ embed_tokens (nn.Embedding): output embedding
895
+ """
896
+
897
+ def __init__(self, config, embed_tokens=None):
898
+
899
+ LSGMBartPretrainedModel.__init__(self, config)
900
+
901
+ self.dropout = config.dropout
902
+ self.layerdrop = config.decoder_layerdrop
903
+ self.padding_idx = config.pad_token_id
904
+ self.max_target_positions = config.max_position_embeddings
905
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
906
+ self.adaptive = config.adaptive
907
+
908
+ if embed_tokens is not None:
909
+ self.embed_tokens = embed_tokens
910
+ else:
911
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
912
+
913
+ self.embed_positions = BartLearnedPositionalEmbedding(
914
+ config.max_position_embeddings,
915
+ config.d_model,
916
+ )
917
+ self.layers = nn.ModuleList([LSGMBartDecoderLayer(config) for _ in range(config.decoder_layers)])
918
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
919
+
920
+ self.gradient_checkpointing = False
921
+
922
+ # Initialize weights and apply final processing
923
+ self.post_init()
924
+
925
+
926
+ class LSGMBartModel(LSGMBartPretrainedModel, BartModel):
927
+
928
+ def __init__(self, config):
929
+
930
+ LSGMBartPretrainedModel.__init__(self, config)
931
+
932
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
933
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
934
+
935
+ self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
936
+ self.num_global_tokens = config.num_global_tokens
937
+
938
+ self.encoder = LSGMBartEncoder(config, self.shared)
939
+ self.decoder = LSGMBartDecoder(config, self.shared)
940
+
941
+ # Initialize weights and apply final processing
942
+ self.post_init()
943
+
944
+ def forward(
945
+ self,
946
+ input_ids=None,
947
+ attention_mask=None,
948
+ decoder_input_ids=None,
949
+ decoder_attention_mask=None,
950
+ head_mask=None,
951
+ decoder_head_mask=None,
952
+ cross_attn_head_mask=None,
953
+ encoder_outputs=None,
954
+ past_key_values=None,
955
+ inputs_embeds=None,
956
+ decoder_inputs_embeds=None,
957
+ use_cache=None,
958
+ output_attentions=None,
959
+ output_hidden_states=None,
960
+ return_dict=None,
961
+ ):
962
+
963
+ # different to other models, Bart automatically creates decoder_input_ids from
964
+ # input_ids if no decoder_input_ids are provided
965
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
966
+ decoder_input_ids = shift_tokens_right(
967
+ input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
968
+ )
969
+
970
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
971
+ output_hidden_states = (
972
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
973
+ )
974
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
975
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
976
+
977
+ if encoder_outputs is None:
978
+ encoder_outputs = self.encoder(
979
+ input_ids=input_ids,
980
+ attention_mask=attention_mask,
981
+ head_mask=head_mask,
982
+ inputs_embeds=inputs_embeds,
983
+ output_attentions=output_attentions,
984
+ output_hidden_states=output_hidden_states,
985
+ return_dict=return_dict,
986
+ )
987
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
988
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
989
+ encoder_outputs = BaseModelOutput(
990
+ last_hidden_state=encoder_outputs[0],
991
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
992
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
993
+ )
994
+
995
+ # Pad mask for global tokens
996
+ if self.pass_global_tokens_to_decoder:
997
+ attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1)
998
+
999
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1000
+ decoder_outputs = self.decoder(
1001
+ input_ids=decoder_input_ids,
1002
+ attention_mask=decoder_attention_mask,
1003
+ encoder_hidden_states=encoder_outputs[0],
1004
+ encoder_attention_mask=attention_mask,
1005
+ head_mask=decoder_head_mask,
1006
+ cross_attn_head_mask=cross_attn_head_mask,
1007
+ past_key_values=past_key_values,
1008
+ inputs_embeds=decoder_inputs_embeds,
1009
+ use_cache=use_cache,
1010
+ output_attentions=output_attentions,
1011
+ output_hidden_states=output_hidden_states,
1012
+ return_dict=return_dict,
1013
+ )
1014
+
1015
+ if not return_dict:
1016
+ return decoder_outputs + encoder_outputs
1017
+
1018
+ return Seq2SeqModelOutput(
1019
+ last_hidden_state=decoder_outputs.last_hidden_state,
1020
+ past_key_values=decoder_outputs.past_key_values,
1021
+ decoder_hidden_states=decoder_outputs.hidden_states,
1022
+ decoder_attentions=decoder_outputs.attentions,
1023
+ cross_attentions=decoder_outputs.cross_attentions,
1024
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1025
+ encoder_hidden_states=encoder_outputs.hidden_states,
1026
+ encoder_attentions=encoder_outputs.attentions,
1027
+ )
1028
+
1029
+
1030
+ class LSGMBartForConditionalGeneration(BartForConditionalGeneration, LSGMBartPretrainedModel):
1031
+
1032
+ base_model_prefix = "model"
1033
+ _keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
1034
+
1035
+ def __init__(self, config):
1036
+
1037
+ LSGMBartPretrainedModel.__init__(self, config)
1038
+ self.model = LSGMBartModel(config)
1039
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
1040
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
1041
+
1042
+ # Initialize weights and apply final processing
1043
+ self.post_init()
1044
+
1045
+
1046
+ class LSGMBartForSequenceClassification(BartForSequenceClassification, LSGMBartPretrainedModel):
1047
+
1048
+ def __init__(self, config: LSGMBartConfig, **kwargs):
1049
+
1050
+ LSGMBartPretrainedModel.__init__(self, config, **kwargs)
1051
+ self.model = LSGMBartModel(config)
1052
+ self.classification_head = LSGMBartClassificationHead(
1053
+ config.d_model,
1054
+ config.d_model,
1055
+ config.num_labels,
1056
+ config.classifier_dropout,
1057
+ )
1058
+ self.model._init_weights(self.classification_head.dense)
1059
+ self.model._init_weights(self.classification_head.out_proj)
1060
+
1061
+
1062
+ class LSGMBartForQuestionAnswering(BartForQuestionAnswering, LSGMBartPretrainedModel):
1063
+
1064
+ def __init__(self, config: LSGMBartConfig):
1065
+
1066
+ LSGMBartPretrainedModel.__init__(self, config)
1067
+
1068
+ config.num_labels = 2
1069
+ self.num_labels = config.num_labels
1070
+
1071
+ self.model = LSGMBartModel(config)
1072
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1073
+
1074
+ self.model._init_weights(self.qa_outputs)
1075
+
1076
+
1077
+ class LSGMBartDecoderWrapper(LSGMBartPretrainedModel):
1078
+ """
1079
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
1080
+ used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
1081
+ """
1082
+
1083
+ def __init__(self, config: LSGMBartConfig):
1084
+ super().__init__(config)
1085
+ self.decoder = LSGMBartDecoder(config)
1086
+
1087
+ def forward(self, *args, **kwargs):
1088
+ return self.decoder(*args, **kwargs)
1089
+
1090
+
1091
+ class LSGMBartForCausalLM(BartForCausalLM, LSGMBartPretrainedModel):
1092
+
1093
+ def __init__(self, config: LSGMBartConfig):
1094
+
1095
+ config = copy.deepcopy(config)
1096
+ config.is_decoder = True
1097
+ config.is_encoder_decoder = False
1098
+ LSGMBartPretrainedModel.__init__(self, config)
1099
+ self.model = LSGMBartDecoderWrapper(config)
1100
+
1101
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1102
+
1103
+ # Initialize weights and apply final processing
1104
+ self.post_init()
1105
+
1106
+
1107
+ def str_to_class(classname):
1108
+ return getattr(sys.modules[__name__], classname)
1109
+
1110
+ # Register model in Auto API
1111
+ try:
1112
+ LSGMBartConfig.register_for_auto_class()
1113
+ for key, value in AUTO_MAP.items():
1114
+ str_to_class(value.split(".")[-1]).register_for_auto_class(key)
1115
+ except:
1116
+ warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
1117
+ warn("Update to transformers >= 4.17.0 to fix.")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d023eaea53d03dadf200fcac226bdc5a3e7349a2c20d718439d9c9cfb47e614e
3
+ size 577604023
sentencepiece.bpe.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:582403da7cb525c4cac90b495e553cb766b818be71755e6bd885072a1067314a
3
+ size 1115393
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "cls_token": "<s>", "pad_token": "<pad>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "model_max_length": 4096, "special_tokens_map_file": null, "name_or_path": "moussaKam/barthez", "tokenizer_class": "BarthezTokenizer"}