admin commited on
Commit
6d8fd18
·
1 Parent(s): ee846ca

sync ms model

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. README.md +12 -7
  2. squeezenet1_1_cqt_2024-01-30_00-57-26/acc.jpg → acc.jpg +0 -0
  3. alexnet_cqt_2024-02-20_06-54-06/acc.csv +0 -41
  4. alexnet_cqt_2024-02-20_06-54-06/acc.jpg +0 -0
  5. alexnet_cqt_2024-02-20_06-54-06/acc.pdf +0 -0
  6. alexnet_cqt_2024-02-20_06-54-06/loss.csv +0 -0
  7. alexnet_cqt_2024-02-20_06-54-06/loss.jpg +0 -0
  8. alexnet_cqt_2024-02-20_06-54-06/loss.pdf +0 -0
  9. alexnet_cqt_2024-02-20_06-54-06/mat.csv +0 -4
  10. alexnet_cqt_2024-02-20_06-54-06/mat.jpg +0 -0
  11. alexnet_cqt_2024-02-20_06-54-06/mat.pdf +0 -0
  12. alexnet_cqt_2024-02-20_06-54-06/result.log +0 -18
  13. alexnet_cqt_2024-02-20_06-54-06/save.pt +0 -3
  14. alexnet_mel_2024-02-20_08-11-04/acc.csv +0 -41
  15. alexnet_mel_2024-02-20_08-11-04/acc.jpg +0 -0
  16. alexnet_mel_2024-02-20_08-11-04/acc.pdf +0 -0
  17. alexnet_mel_2024-02-20_08-11-04/loss.csv +0 -0
  18. alexnet_mel_2024-02-20_08-11-04/loss.jpg +0 -0
  19. alexnet_mel_2024-02-20_08-11-04/loss.pdf +0 -0
  20. alexnet_mel_2024-02-20_08-11-04/mat.csv +0 -4
  21. alexnet_mel_2024-02-20_08-11-04/mat.jpg +0 -0
  22. alexnet_mel_2024-02-20_08-11-04/mat.pdf +0 -0
  23. alexnet_mel_2024-02-20_08-11-04/result.log +0 -18
  24. alexnet_mel_2024-02-20_08-11-04/save.pt +0 -3
  25. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.csv +0 -41
  26. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.jpg +0 -0
  27. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.pdf +0 -0
  28. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.csv +0 -0
  29. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.jpg +0 -0
  30. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.pdf +0 -0
  31. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.csv +0 -4
  32. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.jpg +0 -0
  33. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.pdf +0 -0
  34. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/result.log +0 -20
  35. convnext_tiny_cqt_4cls_2024-02-25_21-30-35/save.pt +0 -3
  36. convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.csv +0 -41
  37. convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.jpg +0 -0
  38. convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.pdf +0 -0
  39. convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.csv +0 -0
  40. convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.jpg +0 -0
  41. convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.pdf +0 -0
  42. convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.csv +0 -4
  43. convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.jpg +0 -0
  44. convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.pdf +0 -0
  45. convnext_tiny_mel_4cls_2024-02-25_20-20-51/result.log +0 -20
  46. convnext_tiny_mel_4cls_2024-02-25_20-20-51/save.pt +0 -3
  47. densenet201_cqt_4cls_2024-02-23_15-46-35.7z +0 -3
  48. densenet201_mel_4cls_2024-02-23_15-07-59/acc.csv +0 -41
  49. densenet201_mel_4cls_2024-02-23_15-07-59/acc.jpg +0 -0
  50. densenet201_mel_4cls_2024-02-23_15-07-59/acc.pdf +0 -0
README.md CHANGED
@@ -6,7 +6,7 @@ language:
6
  - en
7
  metrics:
8
  - accuracy
9
- pipeline_tag: image-classification
10
  tags:
11
  - music
12
  - art
@@ -14,6 +14,12 @@ tags:
14
 
15
  The Classical and Ethnic Vocal Style Classification model aims to distinguish between classical and ethnic vocal styles, with all audio samples sung by professional vocalists. The model is fine-tuned using an audio dataset consisting of four categories, which has been pre-processed into spectrograms. Initially pretrained in the computer vision (CV) domain, the backbone network undergoes a fine-tuning process specifically designed for vocal style classification tasks. In this model, the pre-training on CV tasks provides a foundation for the network to learn general audio features, which are then adjusted during fine-tuning to adapt to the subtle differences between classical and ethnic vocal styles. The audio dataset, comprising samples from classical and various ethnic singing traditions, enables the model to capture unique patterns associated with each vocal style. Representing spectrograms as input allows the model to effectively analyze both the temporal and frequency components of the audio signals. Through the fine-tuning process, the model continuously enhances its ability to discriminate between sound representations and subtle stylistic differences between classical and ethnic styles. This specialized model holds significant potential in the music industry and cultural preservation, as it accurately categorizes vocal performances into these two broad categories. Its foundation in pre-trained computer vision principles demonstrates the versatility and adaptability of neural networks across different domains, enhancing the model's capability to capture complex features of vocal performances.
16
 
 
 
 
 
 
 
17
  ## Maintenance
18
  ```bash
19
  GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/bel_canto
@@ -22,7 +28,6 @@ cd bel_canto
22
 
23
  ## Results
24
  A demo result of SqueezeNet fine-tuning:
25
-
26
  <style>
27
  #pianos td {
28
  vertical-align: middle !important;
@@ -35,20 +40,20 @@ A demo result of SqueezeNet fine-tuning:
35
  <table id="pianos">
36
  <tr>
37
  <th>Loss curve</th>
38
- <td><img src="https://huggingface.co/ccmusic-database/bel_canto/resolve/main/squeezenet1_1_cqt_2024-01-30_00-57-26/loss.jpg"></td>
39
  </tr>
40
  <tr>
41
  <th>Training and validation accuracy</th>
42
- <td><img src="https://huggingface.co/ccmusic-database/bel_canto/resolve/main/squeezenet1_1_cqt_2024-01-30_00-57-26/acc.jpg"></td>
43
  </tr>
44
  <tr>
45
  <th>Confusion matrix</th>
46
- <td><img src="https://huggingface.co/ccmusic-database/bel_canto/resolve/main/squeezenet1_1_cqt_2024-01-30_00-57-26/mat.jpg"></td>
47
  </tr>
48
  </table>
49
 
50
  ## Mirror
51
- <https://www.modelscope.cn/models/ccmusic/bel_canto>
52
 
53
  ## Reference
54
- <https://github.com/monet-joe/ccmusic_clstask_eval>
 
6
  - en
7
  metrics:
8
  - accuracy
9
+ pipeline_tag: audio-classification
10
  tags:
11
  - music
12
  - art
 
14
 
15
  The Classical and Ethnic Vocal Style Classification model aims to distinguish between classical and ethnic vocal styles, with all audio samples sung by professional vocalists. The model is fine-tuned using an audio dataset consisting of four categories, which has been pre-processed into spectrograms. Initially pretrained in the computer vision (CV) domain, the backbone network undergoes a fine-tuning process specifically designed for vocal style classification tasks. In this model, the pre-training on CV tasks provides a foundation for the network to learn general audio features, which are then adjusted during fine-tuning to adapt to the subtle differences between classical and ethnic vocal styles. The audio dataset, comprising samples from classical and various ethnic singing traditions, enables the model to capture unique patterns associated with each vocal style. Representing spectrograms as input allows the model to effectively analyze both the temporal and frequency components of the audio signals. Through the fine-tuning process, the model continuously enhances its ability to discriminate between sound representations and subtle stylistic differences between classical and ethnic styles. This specialized model holds significant potential in the music industry and cultural preservation, as it accurately categorizes vocal performances into these two broad categories. Its foundation in pre-trained computer vision principles demonstrates the versatility and adaptability of neural networks across different domains, enhancing the model's capability to capture complex features of vocal performances.
16
 
17
+ ## Usage
18
+ ```python
19
+ from modelscope import snapshot_download
20
+ model_dir = snapshot_download('ccmusic-database/bel_canto')
21
+ ```
22
+
23
  ## Maintenance
24
  ```bash
25
  GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/bel_canto
 
28
 
29
  ## Results
30
  A demo result of SqueezeNet fine-tuning:
 
31
  <style>
32
  #pianos td {
33
  vertical-align: middle !important;
 
40
  <table id="pianos">
41
  <tr>
42
  <th>Loss curve</th>
43
+ <td><img src="./loss.jpg"></td>
44
  </tr>
45
  <tr>
46
  <th>Training and validation accuracy</th>
47
+ <td><img src="./acc.jpg"></td>
48
  </tr>
49
  <tr>
50
  <th>Confusion matrix</th>
51
+ <td><img src="./mat.jpg"></td>
52
  </tr>
53
  </table>
54
 
55
  ## Mirror
56
+ <https://www.modelscope.cn/models/ccmusic-database/bel_canto>
57
 
58
  ## Reference
59
+ [1] <https://github.com/monetjoe/ccmusic_eval>
squeezenet1_1_cqt_2024-01-30_00-57-26/acc.jpg → acc.jpg RENAMED
File without changes
alexnet_cqt_2024-02-20_06-54-06/acc.csv DELETED
@@ -1,41 +0,0 @@
1
- tra_acc_list,val_acc_list,lr_list
2
- 69.27883363707367,70.20833333333333,0.001
3
- 74.01718302525384,75.52083333333334,0.001
4
- 77.4147357458995,78.33333333333333,0.001
5
- 79.40640458214007,81.25,0.001
6
- 77.15438687841709,78.33333333333333,0.001
7
- 80.60400937255923,79.79166666666667,0.001
8
- 82.27024212444675,82.60416666666667,0.001
9
- 82.46550377505858,80.72916666666666,0.001
10
- 83.72819578234835,82.39583333333333,0.001
11
- 86.0192658161937,85.3125,0.0001
12
- 86.27961468367613,83.64583333333333,0.0001
13
- 86.00624837281958,85.3125,0.0001
14
- 85.6547774017183,84.89583333333334,0.0001
15
- 86.95652173913044,85.625,0.0001
16
- 86.696172871648,85.10416666666667,0.0001
17
- 86.50091122103619,86.25,1e-05
18
- 86.76126008851861,85.3125,1e-05
19
- 86.76126008851861,84.47916666666667,1e-05
20
- 86.82634730538922,86.45833333333334,1e-05
21
- 86.93048685238219,85.625,1e-05
22
- 86.2015100234314,84.27083333333333,1e-05
23
- 86.72220775839625,85.41666666666666,1e-05
24
- 87.03462639937516,84.6875,1e-05
25
- 87.15178338974225,86.04166666666667,1e-05
26
- 87.07367872949753,86.14583333333333,1e-05
27
- 86.51392866441032,85.20833333333333,1.0000000000000002e-06
28
- 86.8784170788857,85.72916666666667,1.0000000000000002e-06
29
- 86.67013798489977,84.6875,1.0000000000000002e-06
30
- 87.47721947409529,85.10416666666667,1.0000000000000002e-06
31
- 86.51392866441032,85.625,1.0000000000000002e-06
32
- 86.96953918250455,84.79166666666667,1.0000000000000002e-06
33
- 87.3079927102317,85.72916666666667,1.0000000000000002e-07
34
- 86.89143452225983,84.0625,1.0000000000000002e-07
35
- 86.74824264514449,86.875,1.0000000000000002e-07
36
- 86.78729497526686,86.66666666666667,1.0000000000000002e-07
37
- 86.5659984379068,85.0,1.0000000000000002e-07
38
- 86.68315542827388,85.10416666666667,1.0000000000000002e-07
39
- 86.24056235355376,86.14583333333333,1.0000000000000004e-08
40
- 86.3837542306691,84.79166666666667,1.0000000000000004e-08
41
- 86.94350429575631,85.0,1.0000000000000004e-08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alexnet_cqt_2024-02-20_06-54-06/acc.jpg DELETED
Binary file (24.8 kB)
 
alexnet_cqt_2024-02-20_06-54-06/acc.pdf DELETED
Binary file (26.8 kB)
 
alexnet_cqt_2024-02-20_06-54-06/loss.csv DELETED
The diff for this file is too large to render. See raw diff
 
alexnet_cqt_2024-02-20_06-54-06/loss.jpg DELETED
Binary file (22 kB)
 
alexnet_cqt_2024-02-20_06-54-06/loss.pdf DELETED
Binary file (48.7 kB)
 
alexnet_cqt_2024-02-20_06-54-06/mat.csv DELETED
@@ -1,4 +0,0 @@
1
- 1.321540062434963525e-01,0.000000000000000000e+00,2.705515088449531730e-02,0.000000000000000000e+00
2
- 0.000000000000000000e+00,1.737773152965660650e-01,0.000000000000000000e+00,3.642039542143600539e-02
3
- 2.705515088449531730e-02,0.000000000000000000e+00,1.654526534859521447e-01,4.162330905306972292e-03
4
- 0.000000000000000000e+00,3.850156087408949240e-02,9.365244536940686357e-03,3.860561914672216433e-01
 
 
 
 
 
alexnet_cqt_2024-02-20_06-54-06/mat.jpg DELETED
Binary file (21.3 kB)
 
alexnet_cqt_2024-02-20_06-54-06/mat.pdf DELETED
Binary file (24.1 kB)
 
alexnet_cqt_2024-02-20_06-54-06/result.log DELETED
@@ -1,18 +0,0 @@
1
- precision recall f1-score support
2
-
3
- m_bel 0.830 0.830 0.830 153
4
- f_bel 0.819 0.827 0.823 202
5
- m_folk 0.820 0.841 0.830 189
6
- f_folk 0.905 0.890 0.897 417
7
-
8
- accuracy 0.857 961
9
- macro avg 0.843 0.847 0.845 961
10
- weighted avg 0.858 0.857 0.858 961
11
-
12
- Backbone : alexnet
13
- Spect type : cqt
14
- Start time : 2024-02-20 06:05:26
15
- Finish time : 2024-02-20 06:53:56
16
- Time cost : 2909s
17
- Full finetune : True
18
- Focal loss : True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alexnet_cqt_2024-02-20_06-54-06/save.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:5407c21bfb9fcbb5ccdd38efa2f276917e89d1007127e0ace598429566c01708
3
- size 58618479
 
 
 
 
alexnet_mel_2024-02-20_08-11-04/acc.csv DELETED
@@ -1,41 +0,0 @@
1
- tra_acc_list,val_acc_list,lr_list
2
- 67.69070554543087,69.58333333333333,0.001
3
- 73.48346784691486,74.6875,0.001
4
- 73.71778182764905,75.41666666666667,0.001
5
- 77.31059619890654,77.39583333333333,0.001
6
- 79.19812548815412,78.95833333333333,0.001
7
- 79.38036969539183,78.125,0.001
8
- 81.71049205935954,80.72916666666666,0.001
9
- 82.14006769070554,83.95833333333333,0.001
10
- 83.91043998958605,81.97916666666667,0.001
11
- 84.58734704504035,82.39583333333333,0.001
12
- 84.26191096068733,85.0,0.001
13
- 86.73522520177038,84.0625,0.001
14
- 87.64644623795887,86.97916666666666,0.001
15
- 88.16714397292372,87.08333333333333,0.0001
16
- 87.86774277531893,84.47916666666667,0.0001
17
- 88.08903931267899,85.83333333333333,0.0001
18
- 88.7659463681333,87.91666666666667,0.0001
19
- 89.39078365009112,85.72916666666667,0.0001
20
- 89.23457432960167,87.1875,0.0001
21
- 89.41681853683936,86.875,0.0001
22
- 88.6487893777662,85.72916666666667,1e-05
23
- 89.35173131996876,86.45833333333334,1e-05
24
- 88.89612080187452,85.9375,1e-05
25
- 89.32569643322051,86.77083333333333,1e-05
26
- 89.23457432960167,87.08333333333333,1e-05
27
- 89.61208018745118,85.20833333333333,1e-05
28
- 89.29966154647228,86.25,1.0000000000000002e-06
29
- 89.16948711273106,85.52083333333333,1.0000000000000002e-06
30
- 88.79198125488155,85.83333333333333,1.0000000000000002e-06
31
- 89.40380109346523,87.08333333333333,1.0000000000000002e-06
32
- 89.15646966935694,87.8125,1.0000000000000002e-06
33
- 89.1955219994793,86.875,1.0000000000000002e-06
34
- 89.5600104139547,86.97916666666666,1.0000000000000002e-06
35
- 89.10439989586045,85.9375,1.0000000000000002e-06
36
- 89.22155688622755,85.52083333333333,1.0000000000000002e-06
37
- 89.52095808383234,85.83333333333333,1.0000000000000002e-06
38
- 89.31267898984639,85.83333333333333,1.0000000000000002e-06
39
- 89.36474876334289,86.45833333333334,1.0000000000000002e-07
40
- 88.85706847175214,85.41666666666666,1.0000000000000002e-07
41
- 89.28664410309815,86.14583333333333,1.0000000000000002e-07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alexnet_mel_2024-02-20_08-11-04/acc.jpg DELETED
Binary file (22.5 kB)
 
alexnet_mel_2024-02-20_08-11-04/acc.pdf DELETED
Binary file (26.7 kB)
 
alexnet_mel_2024-02-20_08-11-04/loss.csv DELETED
The diff for this file is too large to render. See raw diff
 
alexnet_mel_2024-02-20_08-11-04/loss.jpg DELETED
Binary file (22.1 kB)
 
alexnet_mel_2024-02-20_08-11-04/loss.pdf DELETED
Binary file (50.8 kB)
 
alexnet_mel_2024-02-20_08-11-04/mat.csv DELETED
@@ -1,4 +0,0 @@
1
- 1.383975026014568066e-01,0.000000000000000000e+00,2.081165452653485973e-02,0.000000000000000000e+00
2
- 0.000000000000000000e+00,1.758584807492195590e-01,0.000000000000000000e+00,3.433922996878251838e-02
3
- 2.185223725286160323e-02,0.000000000000000000e+00,1.696149843912591049e-01,5.202913631633714932e-03
4
- 0.000000000000000000e+00,3.433922996878251838e-02,7.284079084287201078e-03,3.922996878251820974e-01
 
 
 
 
 
alexnet_mel_2024-02-20_08-11-04/mat.jpg DELETED
Binary file (20.5 kB)
 
alexnet_mel_2024-02-20_08-11-04/mat.pdf DELETED
Binary file (22.6 kB)
 
alexnet_mel_2024-02-20_08-11-04/result.log DELETED
@@ -1,18 +0,0 @@
1
- precision recall f1-score support
2
-
3
- m_bel 0.864 0.869 0.866 153
4
- f_bel 0.837 0.837 0.837 202
5
- m_folk 0.858 0.862 0.860 189
6
- f_folk 0.908 0.904 0.906 417
7
-
8
- accuracy 0.876 961
9
- macro avg 0.867 0.868 0.867 961
10
- weighted avg 0.876 0.876 0.876 961
11
-
12
- Backbone : alexnet
13
- Spect type : mel
14
- Start time : 2024-02-20 07:13:05
15
- Finish time : 2024-02-20 08:10:52
16
- Time cost : 3466s
17
- Full finetune : True
18
- Focal loss : True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
alexnet_mel_2024-02-20_08-11-04/save.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:cf9da8e4eea04186a9d92a9d960cfb2bb3948350ce50de4aa4704d46f0a99962
3
- size 58618479
 
 
 
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.csv DELETED
@@ -1,41 +0,0 @@
1
- tra_acc_list,val_acc_list,lr_list
2
- 51.44493621452747,53.22916666666667,0.001
3
- 58.05779744858109,61.5625,0.001
4
- 61.76776881020568,64.16666666666667,0.001
5
- 63.91564696693569,64.89583333333333,0.001
6
- 68.00312418640979,71.25,0.001
7
- 71.32257224681072,71.25,0.001
8
- 73.66571205415256,75.52083333333334,0.001
9
- 74.26451444936214,76.5625,0.001
10
- 74.81124707107524,77.08333333333334,0.001
11
- 74.03020046862795,75.10416666666667,0.001
12
- 75.47513668315543,77.70833333333333,0.001
13
- 76.39937516271804,76.77083333333333,0.001
14
- 80.14839885446499,81.5625,0.001
15
- 80.73418380630044,81.5625,0.001
16
- 78.23483467846914,77.91666666666667,0.001
17
- 81.21582921114293,81.5625,0.001
18
- 83.59802134860713,83.125,0.001
19
- 83.36370736787295,82.08333333333333,0.001
20
- 82.71283519916688,82.08333333333333,0.001
21
- 80.89039312678989,82.29166666666666,0.001
22
- 83.71517833897423,82.8125,0.001
23
- 83.3897422546212,82.91666666666667,0.001
24
- 87.37307992710231,85.41666666666666,0.0001
25
- 87.93282999218953,87.39583333333333,0.0001
26
- 88.12809164280135,88.33333333333333,0.0001
27
- 88.31033585003905,87.29166666666667,0.0001
28
- 88.79198125488155,86.875,0.0001
29
- 89.07836500911222,86.875,0.0001
30
- 88.84405102837802,87.29166666666667,1e-05
31
- 89.09138245248633,86.66666666666667,1e-05
32
- 88.66180682114033,86.14583333333333,1e-05
33
- 89.48190575370997,88.02083333333334,1e-05
34
- 89.07836500911222,88.125,1e-05
35
- 89.32569643322051,86.77083333333333,1e-05
36
- 88.90913824524863,88.02083333333334,1.0000000000000002e-06
37
- 88.71387659463682,86.97916666666666,1.0000000000000002e-06
38
- 89.13043478260869,87.39583333333333,1.0000000000000002e-06
39
- 89.05233012236397,88.125,1.0000000000000002e-06
40
- 89.35173131996876,88.54166666666666,1.0000000000000002e-06
41
- 88.97422546211924,87.1875,1.0000000000000002e-06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.jpg DELETED
Binary file (22.1 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.pdf DELETED
Binary file (26.8 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.csv DELETED
The diff for this file is too large to render. See raw diff
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.jpg DELETED
Binary file (22.7 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.pdf DELETED
Binary file (48.5 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.csv DELETED
@@ -1,4 +0,0 @@
1
- 1.383975026014568066e-01,0.000000000000000000e+00,2.081165452653485973e-02,0.000000000000000000e+00
2
- 0.000000000000000000e+00,1.789802289281997860e-01,0.000000000000000000e+00,3.121748178980228786e-02
3
- 3.433922996878251838e-02,0.000000000000000000e+00,1.602497398543184237e-01,2.081165452653486146e-03
4
- 0.000000000000000000e+00,2.809573361082206081e-02,6.243496357960457571e-03,3.995837669094692846e-01
 
 
 
 
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.jpg DELETED
Binary file (20.6 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.pdf DELETED
Binary file (22.9 kB)
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/result.log DELETED
@@ -1,20 +0,0 @@
1
- precision recall f1-score support
2
-
3
- m_bel 0.801 0.869 0.834 153
4
- f_bel 0.864 0.851 0.858 202
5
- m_folk 0.856 0.815 0.835 189
6
- f_folk 0.923 0.921 0.922 417
7
-
8
- accuracy 0.877 961
9
- macro avg 0.861 0.864 0.862 961
10
- weighted avg 0.878 0.877 0.877 961
11
-
12
- Class num : 4
13
- Backbone : convnext_tiny
14
- Pretrain src : ImageNet1k_v1
15
- Data column : cqt
16
- Start time : 2024-02-25 18:37:32
17
- Finish time : 2024-02-25 21:30:25
18
- Time cost : 10373s
19
- Full finetune : True
20
- Focal loss : True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/save.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:a3887ea8124ecb661e30d44ee24cfcf5666e8e85e8fa3bea2ad6449b00eea01a
3
- size 111985033
 
 
 
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.csv DELETED
@@ -1,41 +0,0 @@
1
- tra_acc_list,val_acc_list,lr_list
2
- 52.10882582660765,52.39583333333333,0.001
3
- 54.68627961468368,52.81249999999999,0.001
4
- 59.19031502212966,55.52083333333333,0.001
5
- 62.50976308253059,60.10416666666667,0.001
6
- 65.39963551158553,63.541666666666664,0.001
7
- 68.45873470450402,66.5625,0.001
8
- 71.02317104920594,70.625,0.001
9
- 72.68940380109346,69.27083333333334,0.001
10
- 72.24681072637334,69.89583333333333,0.001
11
- 73.06690965894298,73.4375,0.001
12
- 70.15100234313981,68.85416666666667,0.001
13
- 77.27154386878418,75.3125,0.001
14
- 78.29992189533975,75.72916666666667,0.001
15
- 80.0312418640979,76.04166666666666,0.001
16
- 80.94246290028639,77.91666666666667,0.001
17
- 79.32829992189534,73.75,0.001
18
- 83.5719864618589,79.89583333333333,0.0001
19
- 83.7021608956001,78.85416666666667,0.0001
20
- 84.41812028117678,81.97916666666667,0.0001
21
- 85.23821921374642,82.29166666666666,0.0001
22
- 84.977870346264,81.25,0.0001
23
- 85.26425410049467,80.52083333333333,0.0001
24
- 85.61572507159593,83.22916666666667,1e-05
25
- 85.30330643061703,81.45833333333333,1e-05
26
- 85.57667274147357,82.5,1e-05
27
- 85.79796927883365,82.1875,1e-05
28
- 85.53762041135121,79.6875,1e-05
29
- 85.27727154386878,82.1875,1e-05
30
- 85.30330643061703,83.125,1.0000000000000002e-06
31
- 85.82400416558188,82.91666666666667,1.0000000000000002e-06
32
- 85.82400416558188,81.35416666666667,1.0000000000000002e-06
33
- 85.71986461858891,82.08333333333333,1.0000000000000002e-06
34
- 85.49856808122884,82.1875,1.0000000000000002e-06
35
- 85.02994011976048,83.4375,1.0000000000000002e-06
36
- 85.26425410049467,82.39583333333333,1.0000000000000002e-07
37
- 85.66779484509243,81.66666666666667,1.0000000000000002e-07
38
- 86.43582400416558,82.08333333333333,1.0000000000000002e-07
39
- 85.45951575110648,82.08333333333333,1.0000000000000002e-07
40
- 85.51158552460298,81.875,1.0000000000000002e-07
41
- 85.70684717521479,81.97916666666667,1.0000000000000002e-07
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.jpg DELETED
Binary file (22.8 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.pdf DELETED
Binary file (26.3 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.csv DELETED
The diff for this file is too large to render. See raw diff
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.jpg DELETED
Binary file (22.5 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.pdf DELETED
Binary file (49.4 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.csv DELETED
@@ -1,4 +0,0 @@
1
- 1.196670135275754443e-01,0.000000000000000000e+00,2.705515088449531730e-02,0.000000000000000000e+00
2
- 0.000000000000000000e+00,1.935483870967741882e-01,0.000000000000000000e+00,4.994797086368366057e-02
3
- 4.266389177939645949e-02,0.000000000000000000e+00,1.602497398543184237e-01,5.202913631633714932e-03
4
- 0.000000000000000000e+00,3.746097814776274543e-02,1.040582726326743073e-03,3.631633714880332930e-01
 
 
 
 
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.jpg DELETED
Binary file (20.8 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.pdf DELETED
Binary file (23 kB)
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/result.log DELETED
@@ -1,20 +0,0 @@
1
- precision recall f1-score support
2
-
3
- m_bel 0.737 0.816 0.774 141
4
- f_bel 0.838 0.795 0.816 234
5
- m_folk 0.851 0.770 0.808 200
6
- f_folk 0.868 0.904 0.886 386
7
-
8
- accuracy 0.837 961
9
- macro avg 0.824 0.821 0.821 961
10
- weighted avg 0.838 0.837 0.836 961
11
-
12
- Class num : 4
13
- Backbone : convnext_tiny
14
- Pretrain src : ImageNet1k_v1
15
- Data column : mel
16
- Start time : 2024-02-25 18:37:01
17
- Finish time : 2024-02-25 20:20:45
18
- Time cost : 6223s
19
- Full finetune : True
20
- Focal loss : True
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
convnext_tiny_mel_4cls_2024-02-25_20-20-51/save.pt DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:da52fc4b2dcdbbd4bd095962dd50110047246912118d30a3172311fe040aa951
3
- size 111985033
 
 
 
 
densenet201_cqt_4cls_2024-02-23_15-46-35.7z DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9af057a52f3935cac0d04e875e3493d319a07d53eb61c975cfdb458dfe066443
3
- size 69239073
 
 
 
 
densenet201_mel_4cls_2024-02-23_15-07-59/acc.csv DELETED
@@ -1,41 +0,0 @@
1
- tra_acc_list,val_acc_list,lr_list
2
- 41.484375,41.354166666666664,0.001
3
- 41.47135416666667,41.25,0.001
4
- 41.510416666666664,41.66666666666667,0.001
5
- 46.276041666666664,48.95833333333333,0.001
6
- 49.075520833333336,48.854166666666664,0.001
7
- 50.9375,50.31250000000001,0.001
8
- 50.33854166666667,51.145833333333336,0.001
9
- 51.70572916666667,50.625,0.001
10
- 52.82552083333333,53.02083333333333,0.001
11
- 53.76302083333333,52.5,0.001
12
- 58.385416666666664,56.97916666666667,0.001
13
- 57.942708333333336,56.97916666666667,0.001
14
- 58.67187499999999,56.875,0.001
15
- 59.23177083333333,59.27083333333333,0.001
16
- 60.9375,59.166666666666664,0.001
17
- 61.99218749999999,60.83333333333333,0.001
18
- 63.697916666666664,63.33333333333333,0.001
19
- 64.97395833333334,61.458333333333336,0.001
20
- 66.30208333333333,64.27083333333333,0.001
21
- 66.31510416666667,63.95833333333333,0.001
22
- 67.99479166666667,64.6875,0.001
23
- 66.18489583333333,66.875,0.001
24
- 69.921875,66.45833333333333,0.001
25
- 70.859375,70.10416666666667,0.001
26
- 72.7734375,70.83333333333334,0.001
27
- 71.11979166666667,68.125,0.001
28
- 71.66666666666667,68.54166666666667,0.001
29
- 73.4375,70.3125,0.001
30
- 73.59375,72.1875,0.001
31
- 74.53125,69.47916666666667,0.001
32
- 74.44010416666667,72.08333333333333,0.001
33
- 73.7890625,73.125,0.001
34
- 75.44270833333333,73.85416666666667,0.001
35
- 75.16927083333333,74.47916666666666,0.001
36
- 76.43229166666666,75.3125,0.001
37
- 76.00260416666667,73.125,0.001
38
- 77.90364583333333,74.27083333333333,0.0001
39
- 79.16666666666666,74.89583333333333,0.0001
40
- 79.27083333333333,76.45833333333333,0.0001
41
- 79.70052083333333,77.70833333333333,0.0001
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
densenet201_mel_4cls_2024-02-23_15-07-59/acc.jpg DELETED
Binary file (22.3 kB)
 
densenet201_mel_4cls_2024-02-23_15-07-59/acc.pdf DELETED
Binary file (26.8 kB)