admin
commited on
Commit
·
6d8fd18
1
Parent(s):
ee846ca
sync ms model
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- README.md +12 -7
- squeezenet1_1_cqt_2024-01-30_00-57-26/acc.jpg → acc.jpg +0 -0
- alexnet_cqt_2024-02-20_06-54-06/acc.csv +0 -41
- alexnet_cqt_2024-02-20_06-54-06/acc.jpg +0 -0
- alexnet_cqt_2024-02-20_06-54-06/acc.pdf +0 -0
- alexnet_cqt_2024-02-20_06-54-06/loss.csv +0 -0
- alexnet_cqt_2024-02-20_06-54-06/loss.jpg +0 -0
- alexnet_cqt_2024-02-20_06-54-06/loss.pdf +0 -0
- alexnet_cqt_2024-02-20_06-54-06/mat.csv +0 -4
- alexnet_cqt_2024-02-20_06-54-06/mat.jpg +0 -0
- alexnet_cqt_2024-02-20_06-54-06/mat.pdf +0 -0
- alexnet_cqt_2024-02-20_06-54-06/result.log +0 -18
- alexnet_cqt_2024-02-20_06-54-06/save.pt +0 -3
- alexnet_mel_2024-02-20_08-11-04/acc.csv +0 -41
- alexnet_mel_2024-02-20_08-11-04/acc.jpg +0 -0
- alexnet_mel_2024-02-20_08-11-04/acc.pdf +0 -0
- alexnet_mel_2024-02-20_08-11-04/loss.csv +0 -0
- alexnet_mel_2024-02-20_08-11-04/loss.jpg +0 -0
- alexnet_mel_2024-02-20_08-11-04/loss.pdf +0 -0
- alexnet_mel_2024-02-20_08-11-04/mat.csv +0 -4
- alexnet_mel_2024-02-20_08-11-04/mat.jpg +0 -0
- alexnet_mel_2024-02-20_08-11-04/mat.pdf +0 -0
- alexnet_mel_2024-02-20_08-11-04/result.log +0 -18
- alexnet_mel_2024-02-20_08-11-04/save.pt +0 -3
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.csv +0 -41
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.jpg +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.pdf +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.csv +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.jpg +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.pdf +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.csv +0 -4
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.jpg +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.pdf +0 -0
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/result.log +0 -20
- convnext_tiny_cqt_4cls_2024-02-25_21-30-35/save.pt +0 -3
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.csv +0 -41
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.jpg +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.pdf +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.csv +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.jpg +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.pdf +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.csv +0 -4
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.jpg +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.pdf +0 -0
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/result.log +0 -20
- convnext_tiny_mel_4cls_2024-02-25_20-20-51/save.pt +0 -3
- densenet201_cqt_4cls_2024-02-23_15-46-35.7z +0 -3
- densenet201_mel_4cls_2024-02-23_15-07-59/acc.csv +0 -41
- densenet201_mel_4cls_2024-02-23_15-07-59/acc.jpg +0 -0
- densenet201_mel_4cls_2024-02-23_15-07-59/acc.pdf +0 -0
README.md
CHANGED
@@ -6,7 +6,7 @@ language:
|
|
6 |
- en
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
-
pipeline_tag:
|
10 |
tags:
|
11 |
- music
|
12 |
- art
|
@@ -14,6 +14,12 @@ tags:
|
|
14 |
|
15 |
The Classical and Ethnic Vocal Style Classification model aims to distinguish between classical and ethnic vocal styles, with all audio samples sung by professional vocalists. The model is fine-tuned using an audio dataset consisting of four categories, which has been pre-processed into spectrograms. Initially pretrained in the computer vision (CV) domain, the backbone network undergoes a fine-tuning process specifically designed for vocal style classification tasks. In this model, the pre-training on CV tasks provides a foundation for the network to learn general audio features, which are then adjusted during fine-tuning to adapt to the subtle differences between classical and ethnic vocal styles. The audio dataset, comprising samples from classical and various ethnic singing traditions, enables the model to capture unique patterns associated with each vocal style. Representing spectrograms as input allows the model to effectively analyze both the temporal and frequency components of the audio signals. Through the fine-tuning process, the model continuously enhances its ability to discriminate between sound representations and subtle stylistic differences between classical and ethnic styles. This specialized model holds significant potential in the music industry and cultural preservation, as it accurately categorizes vocal performances into these two broad categories. Its foundation in pre-trained computer vision principles demonstrates the versatility and adaptability of neural networks across different domains, enhancing the model's capability to capture complex features of vocal performances.
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
## Maintenance
|
18 |
```bash
|
19 |
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/bel_canto
|
@@ -22,7 +28,6 @@ cd bel_canto
|
|
22 |
|
23 |
## Results
|
24 |
A demo result of SqueezeNet fine-tuning:
|
25 |
-
|
26 |
<style>
|
27 |
#pianos td {
|
28 |
vertical-align: middle !important;
|
@@ -35,20 +40,20 @@ A demo result of SqueezeNet fine-tuning:
|
|
35 |
<table id="pianos">
|
36 |
<tr>
|
37 |
<th>Loss curve</th>
|
38 |
-
<td><img src="
|
39 |
</tr>
|
40 |
<tr>
|
41 |
<th>Training and validation accuracy</th>
|
42 |
-
<td><img src="
|
43 |
</tr>
|
44 |
<tr>
|
45 |
<th>Confusion matrix</th>
|
46 |
-
<td><img src="
|
47 |
</tr>
|
48 |
</table>
|
49 |
|
50 |
## Mirror
|
51 |
-
<https://www.modelscope.cn/models/ccmusic/bel_canto>
|
52 |
|
53 |
## Reference
|
54 |
-
<https://github.com/
|
|
|
6 |
- en
|
7 |
metrics:
|
8 |
- accuracy
|
9 |
+
pipeline_tag: audio-classification
|
10 |
tags:
|
11 |
- music
|
12 |
- art
|
|
|
14 |
|
15 |
The Classical and Ethnic Vocal Style Classification model aims to distinguish between classical and ethnic vocal styles, with all audio samples sung by professional vocalists. The model is fine-tuned using an audio dataset consisting of four categories, which has been pre-processed into spectrograms. Initially pretrained in the computer vision (CV) domain, the backbone network undergoes a fine-tuning process specifically designed for vocal style classification tasks. In this model, the pre-training on CV tasks provides a foundation for the network to learn general audio features, which are then adjusted during fine-tuning to adapt to the subtle differences between classical and ethnic vocal styles. The audio dataset, comprising samples from classical and various ethnic singing traditions, enables the model to capture unique patterns associated with each vocal style. Representing spectrograms as input allows the model to effectively analyze both the temporal and frequency components of the audio signals. Through the fine-tuning process, the model continuously enhances its ability to discriminate between sound representations and subtle stylistic differences between classical and ethnic styles. This specialized model holds significant potential in the music industry and cultural preservation, as it accurately categorizes vocal performances into these two broad categories. Its foundation in pre-trained computer vision principles demonstrates the versatility and adaptability of neural networks across different domains, enhancing the model's capability to capture complex features of vocal performances.
|
16 |
|
17 |
+
## Usage
|
18 |
+
```python
|
19 |
+
from modelscope import snapshot_download
|
20 |
+
model_dir = snapshot_download('ccmusic-database/bel_canto')
|
21 |
+
```
|
22 |
+
|
23 |
## Maintenance
|
24 |
```bash
|
25 |
GIT_LFS_SKIP_SMUDGE=1 git clone [email protected]:ccmusic-database/bel_canto
|
|
|
28 |
|
29 |
## Results
|
30 |
A demo result of SqueezeNet fine-tuning:
|
|
|
31 |
<style>
|
32 |
#pianos td {
|
33 |
vertical-align: middle !important;
|
|
|
40 |
<table id="pianos">
|
41 |
<tr>
|
42 |
<th>Loss curve</th>
|
43 |
+
<td><img src="./loss.jpg"></td>
|
44 |
</tr>
|
45 |
<tr>
|
46 |
<th>Training and validation accuracy</th>
|
47 |
+
<td><img src="./acc.jpg"></td>
|
48 |
</tr>
|
49 |
<tr>
|
50 |
<th>Confusion matrix</th>
|
51 |
+
<td><img src="./mat.jpg"></td>
|
52 |
</tr>
|
53 |
</table>
|
54 |
|
55 |
## Mirror
|
56 |
+
<https://www.modelscope.cn/models/ccmusic-database/bel_canto>
|
57 |
|
58 |
## Reference
|
59 |
+
[1] <https://github.com/monetjoe/ccmusic_eval>
|
squeezenet1_1_cqt_2024-01-30_00-57-26/acc.jpg → acc.jpg
RENAMED
File without changes
|
alexnet_cqt_2024-02-20_06-54-06/acc.csv
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
tra_acc_list,val_acc_list,lr_list
|
2 |
-
69.27883363707367,70.20833333333333,0.001
|
3 |
-
74.01718302525384,75.52083333333334,0.001
|
4 |
-
77.4147357458995,78.33333333333333,0.001
|
5 |
-
79.40640458214007,81.25,0.001
|
6 |
-
77.15438687841709,78.33333333333333,0.001
|
7 |
-
80.60400937255923,79.79166666666667,0.001
|
8 |
-
82.27024212444675,82.60416666666667,0.001
|
9 |
-
82.46550377505858,80.72916666666666,0.001
|
10 |
-
83.72819578234835,82.39583333333333,0.001
|
11 |
-
86.0192658161937,85.3125,0.0001
|
12 |
-
86.27961468367613,83.64583333333333,0.0001
|
13 |
-
86.00624837281958,85.3125,0.0001
|
14 |
-
85.6547774017183,84.89583333333334,0.0001
|
15 |
-
86.95652173913044,85.625,0.0001
|
16 |
-
86.696172871648,85.10416666666667,0.0001
|
17 |
-
86.50091122103619,86.25,1e-05
|
18 |
-
86.76126008851861,85.3125,1e-05
|
19 |
-
86.76126008851861,84.47916666666667,1e-05
|
20 |
-
86.82634730538922,86.45833333333334,1e-05
|
21 |
-
86.93048685238219,85.625,1e-05
|
22 |
-
86.2015100234314,84.27083333333333,1e-05
|
23 |
-
86.72220775839625,85.41666666666666,1e-05
|
24 |
-
87.03462639937516,84.6875,1e-05
|
25 |
-
87.15178338974225,86.04166666666667,1e-05
|
26 |
-
87.07367872949753,86.14583333333333,1e-05
|
27 |
-
86.51392866441032,85.20833333333333,1.0000000000000002e-06
|
28 |
-
86.8784170788857,85.72916666666667,1.0000000000000002e-06
|
29 |
-
86.67013798489977,84.6875,1.0000000000000002e-06
|
30 |
-
87.47721947409529,85.10416666666667,1.0000000000000002e-06
|
31 |
-
86.51392866441032,85.625,1.0000000000000002e-06
|
32 |
-
86.96953918250455,84.79166666666667,1.0000000000000002e-06
|
33 |
-
87.3079927102317,85.72916666666667,1.0000000000000002e-07
|
34 |
-
86.89143452225983,84.0625,1.0000000000000002e-07
|
35 |
-
86.74824264514449,86.875,1.0000000000000002e-07
|
36 |
-
86.78729497526686,86.66666666666667,1.0000000000000002e-07
|
37 |
-
86.5659984379068,85.0,1.0000000000000002e-07
|
38 |
-
86.68315542827388,85.10416666666667,1.0000000000000002e-07
|
39 |
-
86.24056235355376,86.14583333333333,1.0000000000000004e-08
|
40 |
-
86.3837542306691,84.79166666666667,1.0000000000000004e-08
|
41 |
-
86.94350429575631,85.0,1.0000000000000004e-08
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alexnet_cqt_2024-02-20_06-54-06/acc.jpg
DELETED
Binary file (24.8 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/acc.pdf
DELETED
Binary file (26.8 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/loss.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
alexnet_cqt_2024-02-20_06-54-06/loss.jpg
DELETED
Binary file (22 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/loss.pdf
DELETED
Binary file (48.7 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/mat.csv
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
1.321540062434963525e-01,0.000000000000000000e+00,2.705515088449531730e-02,0.000000000000000000e+00
|
2 |
-
0.000000000000000000e+00,1.737773152965660650e-01,0.000000000000000000e+00,3.642039542143600539e-02
|
3 |
-
2.705515088449531730e-02,0.000000000000000000e+00,1.654526534859521447e-01,4.162330905306972292e-03
|
4 |
-
0.000000000000000000e+00,3.850156087408949240e-02,9.365244536940686357e-03,3.860561914672216433e-01
|
|
|
|
|
|
|
|
|
|
alexnet_cqt_2024-02-20_06-54-06/mat.jpg
DELETED
Binary file (21.3 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/mat.pdf
DELETED
Binary file (24.1 kB)
|
|
alexnet_cqt_2024-02-20_06-54-06/result.log
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
precision recall f1-score support
|
2 |
-
|
3 |
-
m_bel 0.830 0.830 0.830 153
|
4 |
-
f_bel 0.819 0.827 0.823 202
|
5 |
-
m_folk 0.820 0.841 0.830 189
|
6 |
-
f_folk 0.905 0.890 0.897 417
|
7 |
-
|
8 |
-
accuracy 0.857 961
|
9 |
-
macro avg 0.843 0.847 0.845 961
|
10 |
-
weighted avg 0.858 0.857 0.858 961
|
11 |
-
|
12 |
-
Backbone : alexnet
|
13 |
-
Spect type : cqt
|
14 |
-
Start time : 2024-02-20 06:05:26
|
15 |
-
Finish time : 2024-02-20 06:53:56
|
16 |
-
Time cost : 2909s
|
17 |
-
Full finetune : True
|
18 |
-
Focal loss : True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alexnet_cqt_2024-02-20_06-54-06/save.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:5407c21bfb9fcbb5ccdd38efa2f276917e89d1007127e0ace598429566c01708
|
3 |
-
size 58618479
|
|
|
|
|
|
|
|
alexnet_mel_2024-02-20_08-11-04/acc.csv
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
tra_acc_list,val_acc_list,lr_list
|
2 |
-
67.69070554543087,69.58333333333333,0.001
|
3 |
-
73.48346784691486,74.6875,0.001
|
4 |
-
73.71778182764905,75.41666666666667,0.001
|
5 |
-
77.31059619890654,77.39583333333333,0.001
|
6 |
-
79.19812548815412,78.95833333333333,0.001
|
7 |
-
79.38036969539183,78.125,0.001
|
8 |
-
81.71049205935954,80.72916666666666,0.001
|
9 |
-
82.14006769070554,83.95833333333333,0.001
|
10 |
-
83.91043998958605,81.97916666666667,0.001
|
11 |
-
84.58734704504035,82.39583333333333,0.001
|
12 |
-
84.26191096068733,85.0,0.001
|
13 |
-
86.73522520177038,84.0625,0.001
|
14 |
-
87.64644623795887,86.97916666666666,0.001
|
15 |
-
88.16714397292372,87.08333333333333,0.0001
|
16 |
-
87.86774277531893,84.47916666666667,0.0001
|
17 |
-
88.08903931267899,85.83333333333333,0.0001
|
18 |
-
88.7659463681333,87.91666666666667,0.0001
|
19 |
-
89.39078365009112,85.72916666666667,0.0001
|
20 |
-
89.23457432960167,87.1875,0.0001
|
21 |
-
89.41681853683936,86.875,0.0001
|
22 |
-
88.6487893777662,85.72916666666667,1e-05
|
23 |
-
89.35173131996876,86.45833333333334,1e-05
|
24 |
-
88.89612080187452,85.9375,1e-05
|
25 |
-
89.32569643322051,86.77083333333333,1e-05
|
26 |
-
89.23457432960167,87.08333333333333,1e-05
|
27 |
-
89.61208018745118,85.20833333333333,1e-05
|
28 |
-
89.29966154647228,86.25,1.0000000000000002e-06
|
29 |
-
89.16948711273106,85.52083333333333,1.0000000000000002e-06
|
30 |
-
88.79198125488155,85.83333333333333,1.0000000000000002e-06
|
31 |
-
89.40380109346523,87.08333333333333,1.0000000000000002e-06
|
32 |
-
89.15646966935694,87.8125,1.0000000000000002e-06
|
33 |
-
89.1955219994793,86.875,1.0000000000000002e-06
|
34 |
-
89.5600104139547,86.97916666666666,1.0000000000000002e-06
|
35 |
-
89.10439989586045,85.9375,1.0000000000000002e-06
|
36 |
-
89.22155688622755,85.52083333333333,1.0000000000000002e-06
|
37 |
-
89.52095808383234,85.83333333333333,1.0000000000000002e-06
|
38 |
-
89.31267898984639,85.83333333333333,1.0000000000000002e-06
|
39 |
-
89.36474876334289,86.45833333333334,1.0000000000000002e-07
|
40 |
-
88.85706847175214,85.41666666666666,1.0000000000000002e-07
|
41 |
-
89.28664410309815,86.14583333333333,1.0000000000000002e-07
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alexnet_mel_2024-02-20_08-11-04/acc.jpg
DELETED
Binary file (22.5 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/acc.pdf
DELETED
Binary file (26.7 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/loss.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
alexnet_mel_2024-02-20_08-11-04/loss.jpg
DELETED
Binary file (22.1 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/loss.pdf
DELETED
Binary file (50.8 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/mat.csv
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
1.383975026014568066e-01,0.000000000000000000e+00,2.081165452653485973e-02,0.000000000000000000e+00
|
2 |
-
0.000000000000000000e+00,1.758584807492195590e-01,0.000000000000000000e+00,3.433922996878251838e-02
|
3 |
-
2.185223725286160323e-02,0.000000000000000000e+00,1.696149843912591049e-01,5.202913631633714932e-03
|
4 |
-
0.000000000000000000e+00,3.433922996878251838e-02,7.284079084287201078e-03,3.922996878251820974e-01
|
|
|
|
|
|
|
|
|
|
alexnet_mel_2024-02-20_08-11-04/mat.jpg
DELETED
Binary file (20.5 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/mat.pdf
DELETED
Binary file (22.6 kB)
|
|
alexnet_mel_2024-02-20_08-11-04/result.log
DELETED
@@ -1,18 +0,0 @@
|
|
1 |
-
precision recall f1-score support
|
2 |
-
|
3 |
-
m_bel 0.864 0.869 0.866 153
|
4 |
-
f_bel 0.837 0.837 0.837 202
|
5 |
-
m_folk 0.858 0.862 0.860 189
|
6 |
-
f_folk 0.908 0.904 0.906 417
|
7 |
-
|
8 |
-
accuracy 0.876 961
|
9 |
-
macro avg 0.867 0.868 0.867 961
|
10 |
-
weighted avg 0.876 0.876 0.876 961
|
11 |
-
|
12 |
-
Backbone : alexnet
|
13 |
-
Spect type : mel
|
14 |
-
Start time : 2024-02-20 07:13:05
|
15 |
-
Finish time : 2024-02-20 08:10:52
|
16 |
-
Time cost : 3466s
|
17 |
-
Full finetune : True
|
18 |
-
Focal loss : True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
alexnet_mel_2024-02-20_08-11-04/save.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:cf9da8e4eea04186a9d92a9d960cfb2bb3948350ce50de4aa4704d46f0a99962
|
3 |
-
size 58618479
|
|
|
|
|
|
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.csv
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
tra_acc_list,val_acc_list,lr_list
|
2 |
-
51.44493621452747,53.22916666666667,0.001
|
3 |
-
58.05779744858109,61.5625,0.001
|
4 |
-
61.76776881020568,64.16666666666667,0.001
|
5 |
-
63.91564696693569,64.89583333333333,0.001
|
6 |
-
68.00312418640979,71.25,0.001
|
7 |
-
71.32257224681072,71.25,0.001
|
8 |
-
73.66571205415256,75.52083333333334,0.001
|
9 |
-
74.26451444936214,76.5625,0.001
|
10 |
-
74.81124707107524,77.08333333333334,0.001
|
11 |
-
74.03020046862795,75.10416666666667,0.001
|
12 |
-
75.47513668315543,77.70833333333333,0.001
|
13 |
-
76.39937516271804,76.77083333333333,0.001
|
14 |
-
80.14839885446499,81.5625,0.001
|
15 |
-
80.73418380630044,81.5625,0.001
|
16 |
-
78.23483467846914,77.91666666666667,0.001
|
17 |
-
81.21582921114293,81.5625,0.001
|
18 |
-
83.59802134860713,83.125,0.001
|
19 |
-
83.36370736787295,82.08333333333333,0.001
|
20 |
-
82.71283519916688,82.08333333333333,0.001
|
21 |
-
80.89039312678989,82.29166666666666,0.001
|
22 |
-
83.71517833897423,82.8125,0.001
|
23 |
-
83.3897422546212,82.91666666666667,0.001
|
24 |
-
87.37307992710231,85.41666666666666,0.0001
|
25 |
-
87.93282999218953,87.39583333333333,0.0001
|
26 |
-
88.12809164280135,88.33333333333333,0.0001
|
27 |
-
88.31033585003905,87.29166666666667,0.0001
|
28 |
-
88.79198125488155,86.875,0.0001
|
29 |
-
89.07836500911222,86.875,0.0001
|
30 |
-
88.84405102837802,87.29166666666667,1e-05
|
31 |
-
89.09138245248633,86.66666666666667,1e-05
|
32 |
-
88.66180682114033,86.14583333333333,1e-05
|
33 |
-
89.48190575370997,88.02083333333334,1e-05
|
34 |
-
89.07836500911222,88.125,1e-05
|
35 |
-
89.32569643322051,86.77083333333333,1e-05
|
36 |
-
88.90913824524863,88.02083333333334,1.0000000000000002e-06
|
37 |
-
88.71387659463682,86.97916666666666,1.0000000000000002e-06
|
38 |
-
89.13043478260869,87.39583333333333,1.0000000000000002e-06
|
39 |
-
89.05233012236397,88.125,1.0000000000000002e-06
|
40 |
-
89.35173131996876,88.54166666666666,1.0000000000000002e-06
|
41 |
-
88.97422546211924,87.1875,1.0000000000000002e-06
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.jpg
DELETED
Binary file (22.1 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/acc.pdf
DELETED
Binary file (26.8 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.jpg
DELETED
Binary file (22.7 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/loss.pdf
DELETED
Binary file (48.5 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.csv
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
1.383975026014568066e-01,0.000000000000000000e+00,2.081165452653485973e-02,0.000000000000000000e+00
|
2 |
-
0.000000000000000000e+00,1.789802289281997860e-01,0.000000000000000000e+00,3.121748178980228786e-02
|
3 |
-
3.433922996878251838e-02,0.000000000000000000e+00,1.602497398543184237e-01,2.081165452653486146e-03
|
4 |
-
0.000000000000000000e+00,2.809573361082206081e-02,6.243496357960457571e-03,3.995837669094692846e-01
|
|
|
|
|
|
|
|
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.jpg
DELETED
Binary file (20.6 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/mat.pdf
DELETED
Binary file (22.9 kB)
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/result.log
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
precision recall f1-score support
|
2 |
-
|
3 |
-
m_bel 0.801 0.869 0.834 153
|
4 |
-
f_bel 0.864 0.851 0.858 202
|
5 |
-
m_folk 0.856 0.815 0.835 189
|
6 |
-
f_folk 0.923 0.921 0.922 417
|
7 |
-
|
8 |
-
accuracy 0.877 961
|
9 |
-
macro avg 0.861 0.864 0.862 961
|
10 |
-
weighted avg 0.878 0.877 0.877 961
|
11 |
-
|
12 |
-
Class num : 4
|
13 |
-
Backbone : convnext_tiny
|
14 |
-
Pretrain src : ImageNet1k_v1
|
15 |
-
Data column : cqt
|
16 |
-
Start time : 2024-02-25 18:37:32
|
17 |
-
Finish time : 2024-02-25 21:30:25
|
18 |
-
Time cost : 10373s
|
19 |
-
Full finetune : True
|
20 |
-
Focal loss : True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
convnext_tiny_cqt_4cls_2024-02-25_21-30-35/save.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:a3887ea8124ecb661e30d44ee24cfcf5666e8e85e8fa3bea2ad6449b00eea01a
|
3 |
-
size 111985033
|
|
|
|
|
|
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.csv
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
tra_acc_list,val_acc_list,lr_list
|
2 |
-
52.10882582660765,52.39583333333333,0.001
|
3 |
-
54.68627961468368,52.81249999999999,0.001
|
4 |
-
59.19031502212966,55.52083333333333,0.001
|
5 |
-
62.50976308253059,60.10416666666667,0.001
|
6 |
-
65.39963551158553,63.541666666666664,0.001
|
7 |
-
68.45873470450402,66.5625,0.001
|
8 |
-
71.02317104920594,70.625,0.001
|
9 |
-
72.68940380109346,69.27083333333334,0.001
|
10 |
-
72.24681072637334,69.89583333333333,0.001
|
11 |
-
73.06690965894298,73.4375,0.001
|
12 |
-
70.15100234313981,68.85416666666667,0.001
|
13 |
-
77.27154386878418,75.3125,0.001
|
14 |
-
78.29992189533975,75.72916666666667,0.001
|
15 |
-
80.0312418640979,76.04166666666666,0.001
|
16 |
-
80.94246290028639,77.91666666666667,0.001
|
17 |
-
79.32829992189534,73.75,0.001
|
18 |
-
83.5719864618589,79.89583333333333,0.0001
|
19 |
-
83.7021608956001,78.85416666666667,0.0001
|
20 |
-
84.41812028117678,81.97916666666667,0.0001
|
21 |
-
85.23821921374642,82.29166666666666,0.0001
|
22 |
-
84.977870346264,81.25,0.0001
|
23 |
-
85.26425410049467,80.52083333333333,0.0001
|
24 |
-
85.61572507159593,83.22916666666667,1e-05
|
25 |
-
85.30330643061703,81.45833333333333,1e-05
|
26 |
-
85.57667274147357,82.5,1e-05
|
27 |
-
85.79796927883365,82.1875,1e-05
|
28 |
-
85.53762041135121,79.6875,1e-05
|
29 |
-
85.27727154386878,82.1875,1e-05
|
30 |
-
85.30330643061703,83.125,1.0000000000000002e-06
|
31 |
-
85.82400416558188,82.91666666666667,1.0000000000000002e-06
|
32 |
-
85.82400416558188,81.35416666666667,1.0000000000000002e-06
|
33 |
-
85.71986461858891,82.08333333333333,1.0000000000000002e-06
|
34 |
-
85.49856808122884,82.1875,1.0000000000000002e-06
|
35 |
-
85.02994011976048,83.4375,1.0000000000000002e-06
|
36 |
-
85.26425410049467,82.39583333333333,1.0000000000000002e-07
|
37 |
-
85.66779484509243,81.66666666666667,1.0000000000000002e-07
|
38 |
-
86.43582400416558,82.08333333333333,1.0000000000000002e-07
|
39 |
-
85.45951575110648,82.08333333333333,1.0000000000000002e-07
|
40 |
-
85.51158552460298,81.875,1.0000000000000002e-07
|
41 |
-
85.70684717521479,81.97916666666667,1.0000000000000002e-07
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.jpg
DELETED
Binary file (22.8 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/acc.pdf
DELETED
Binary file (26.3 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.csv
DELETED
The diff for this file is too large to render.
See raw diff
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.jpg
DELETED
Binary file (22.5 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/loss.pdf
DELETED
Binary file (49.4 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.csv
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
1.196670135275754443e-01,0.000000000000000000e+00,2.705515088449531730e-02,0.000000000000000000e+00
|
2 |
-
0.000000000000000000e+00,1.935483870967741882e-01,0.000000000000000000e+00,4.994797086368366057e-02
|
3 |
-
4.266389177939645949e-02,0.000000000000000000e+00,1.602497398543184237e-01,5.202913631633714932e-03
|
4 |
-
0.000000000000000000e+00,3.746097814776274543e-02,1.040582726326743073e-03,3.631633714880332930e-01
|
|
|
|
|
|
|
|
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.jpg
DELETED
Binary file (20.8 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/mat.pdf
DELETED
Binary file (23 kB)
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/result.log
DELETED
@@ -1,20 +0,0 @@
|
|
1 |
-
precision recall f1-score support
|
2 |
-
|
3 |
-
m_bel 0.737 0.816 0.774 141
|
4 |
-
f_bel 0.838 0.795 0.816 234
|
5 |
-
m_folk 0.851 0.770 0.808 200
|
6 |
-
f_folk 0.868 0.904 0.886 386
|
7 |
-
|
8 |
-
accuracy 0.837 961
|
9 |
-
macro avg 0.824 0.821 0.821 961
|
10 |
-
weighted avg 0.838 0.837 0.836 961
|
11 |
-
|
12 |
-
Class num : 4
|
13 |
-
Backbone : convnext_tiny
|
14 |
-
Pretrain src : ImageNet1k_v1
|
15 |
-
Data column : mel
|
16 |
-
Start time : 2024-02-25 18:37:01
|
17 |
-
Finish time : 2024-02-25 20:20:45
|
18 |
-
Time cost : 6223s
|
19 |
-
Full finetune : True
|
20 |
-
Focal loss : True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
convnext_tiny_mel_4cls_2024-02-25_20-20-51/save.pt
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:da52fc4b2dcdbbd4bd095962dd50110047246912118d30a3172311fe040aa951
|
3 |
-
size 111985033
|
|
|
|
|
|
|
|
densenet201_cqt_4cls_2024-02-23_15-46-35.7z
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9af057a52f3935cac0d04e875e3493d319a07d53eb61c975cfdb458dfe066443
|
3 |
-
size 69239073
|
|
|
|
|
|
|
|
densenet201_mel_4cls_2024-02-23_15-07-59/acc.csv
DELETED
@@ -1,41 +0,0 @@
|
|
1 |
-
tra_acc_list,val_acc_list,lr_list
|
2 |
-
41.484375,41.354166666666664,0.001
|
3 |
-
41.47135416666667,41.25,0.001
|
4 |
-
41.510416666666664,41.66666666666667,0.001
|
5 |
-
46.276041666666664,48.95833333333333,0.001
|
6 |
-
49.075520833333336,48.854166666666664,0.001
|
7 |
-
50.9375,50.31250000000001,0.001
|
8 |
-
50.33854166666667,51.145833333333336,0.001
|
9 |
-
51.70572916666667,50.625,0.001
|
10 |
-
52.82552083333333,53.02083333333333,0.001
|
11 |
-
53.76302083333333,52.5,0.001
|
12 |
-
58.385416666666664,56.97916666666667,0.001
|
13 |
-
57.942708333333336,56.97916666666667,0.001
|
14 |
-
58.67187499999999,56.875,0.001
|
15 |
-
59.23177083333333,59.27083333333333,0.001
|
16 |
-
60.9375,59.166666666666664,0.001
|
17 |
-
61.99218749999999,60.83333333333333,0.001
|
18 |
-
63.697916666666664,63.33333333333333,0.001
|
19 |
-
64.97395833333334,61.458333333333336,0.001
|
20 |
-
66.30208333333333,64.27083333333333,0.001
|
21 |
-
66.31510416666667,63.95833333333333,0.001
|
22 |
-
67.99479166666667,64.6875,0.001
|
23 |
-
66.18489583333333,66.875,0.001
|
24 |
-
69.921875,66.45833333333333,0.001
|
25 |
-
70.859375,70.10416666666667,0.001
|
26 |
-
72.7734375,70.83333333333334,0.001
|
27 |
-
71.11979166666667,68.125,0.001
|
28 |
-
71.66666666666667,68.54166666666667,0.001
|
29 |
-
73.4375,70.3125,0.001
|
30 |
-
73.59375,72.1875,0.001
|
31 |
-
74.53125,69.47916666666667,0.001
|
32 |
-
74.44010416666667,72.08333333333333,0.001
|
33 |
-
73.7890625,73.125,0.001
|
34 |
-
75.44270833333333,73.85416666666667,0.001
|
35 |
-
75.16927083333333,74.47916666666666,0.001
|
36 |
-
76.43229166666666,75.3125,0.001
|
37 |
-
76.00260416666667,73.125,0.001
|
38 |
-
77.90364583333333,74.27083333333333,0.0001
|
39 |
-
79.16666666666666,74.89583333333333,0.0001
|
40 |
-
79.27083333333333,76.45833333333333,0.0001
|
41 |
-
79.70052083333333,77.70833333333333,0.0001
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
densenet201_mel_4cls_2024-02-23_15-07-59/acc.jpg
DELETED
Binary file (22.3 kB)
|
|
densenet201_mel_4cls_2024-02-23_15-07-59/acc.pdf
DELETED
Binary file (26.8 kB)
|
|