Training complete
Browse files- README.md +95 -0
- pytorch_model.bin +1 -1
README.md
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: dslim/bert-base-NER
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: ner-fine-tune-bert-ner
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# ner-fine-tune-bert-ner
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.3662
|
24 |
+
- Precision: 0.2383
|
25 |
+
- Recall: 0.2818
|
26 |
+
- F1: 0.2582
|
27 |
+
- Accuracy: 0.9406
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 1e-05
|
47 |
+
- train_batch_size: 8
|
48 |
+
- eval_batch_size: 8
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 30
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 1.0 | 122 | 0.2295 | 0.1255 | 0.0716 | 0.0912 | 0.9514 |
|
59 |
+
| No log | 2.0 | 244 | 0.2152 | 0.2022 | 0.1270 | 0.1560 | 0.9514 |
|
60 |
+
| No log | 3.0 | 366 | 0.2044 | 0.1696 | 0.1547 | 0.1618 | 0.9497 |
|
61 |
+
| No log | 4.0 | 488 | 0.2269 | 0.1980 | 0.1363 | 0.1614 | 0.9536 |
|
62 |
+
| 0.2142 | 5.0 | 610 | 0.2335 | 0.1931 | 0.1547 | 0.1718 | 0.9521 |
|
63 |
+
| 0.2142 | 6.0 | 732 | 0.2516 | 0.1959 | 0.1778 | 0.1864 | 0.9491 |
|
64 |
+
| 0.2142 | 7.0 | 854 | 0.2446 | 0.2565 | 0.2517 | 0.2541 | 0.9542 |
|
65 |
+
| 0.2142 | 8.0 | 976 | 0.2527 | 0.2273 | 0.2656 | 0.2449 | 0.9481 |
|
66 |
+
| 0.0658 | 9.0 | 1098 | 0.2724 | 0.2459 | 0.2055 | 0.2239 | 0.9526 |
|
67 |
+
| 0.0658 | 10.0 | 1220 | 0.2620 | 0.2895 | 0.2748 | 0.2820 | 0.9549 |
|
68 |
+
| 0.0658 | 11.0 | 1342 | 0.2846 | 0.2102 | 0.2748 | 0.2382 | 0.9416 |
|
69 |
+
| 0.0658 | 12.0 | 1464 | 0.2943 | 0.2292 | 0.2610 | 0.2441 | 0.9450 |
|
70 |
+
| 0.0273 | 13.0 | 1586 | 0.3154 | 0.2064 | 0.2679 | 0.2332 | 0.9381 |
|
71 |
+
| 0.0273 | 14.0 | 1708 | 0.3097 | 0.2254 | 0.2217 | 0.2235 | 0.9464 |
|
72 |
+
| 0.0273 | 15.0 | 1830 | 0.3313 | 0.2375 | 0.2517 | 0.2444 | 0.9426 |
|
73 |
+
| 0.0273 | 16.0 | 1952 | 0.3256 | 0.2098 | 0.2864 | 0.2422 | 0.9361 |
|
74 |
+
| 0.0155 | 17.0 | 2074 | 0.3333 | 0.2162 | 0.2656 | 0.2383 | 0.9393 |
|
75 |
+
| 0.0155 | 18.0 | 2196 | 0.3073 | 0.2446 | 0.2864 | 0.2638 | 0.9449 |
|
76 |
+
| 0.0155 | 19.0 | 2318 | 0.3241 | 0.2418 | 0.2725 | 0.2562 | 0.9437 |
|
77 |
+
| 0.0155 | 20.0 | 2440 | 0.3348 | 0.2338 | 0.2587 | 0.2456 | 0.9446 |
|
78 |
+
| 0.0091 | 21.0 | 2562 | 0.3595 | 0.234 | 0.2702 | 0.2508 | 0.9402 |
|
79 |
+
| 0.0091 | 22.0 | 2684 | 0.3658 | 0.2263 | 0.2818 | 0.2510 | 0.9387 |
|
80 |
+
| 0.0091 | 23.0 | 2806 | 0.3495 | 0.2391 | 0.2794 | 0.2577 | 0.9419 |
|
81 |
+
| 0.0091 | 24.0 | 2928 | 0.3545 | 0.2398 | 0.2841 | 0.2600 | 0.9409 |
|
82 |
+
| 0.0066 | 25.0 | 3050 | 0.3557 | 0.2309 | 0.2864 | 0.2557 | 0.9402 |
|
83 |
+
| 0.0066 | 26.0 | 3172 | 0.3498 | 0.2449 | 0.2748 | 0.2590 | 0.9432 |
|
84 |
+
| 0.0066 | 27.0 | 3294 | 0.3586 | 0.2375 | 0.2841 | 0.2587 | 0.9416 |
|
85 |
+
| 0.0066 | 28.0 | 3416 | 0.3676 | 0.2389 | 0.2725 | 0.2546 | 0.9417 |
|
86 |
+
| 0.005 | 29.0 | 3538 | 0.3663 | 0.2412 | 0.2864 | 0.2619 | 0.9404 |
|
87 |
+
| 0.005 | 30.0 | 3660 | 0.3662 | 0.2383 | 0.2818 | 0.2582 | 0.9406 |
|
88 |
+
|
89 |
+
|
90 |
+
### Framework versions
|
91 |
+
|
92 |
+
- Transformers 4.34.1
|
93 |
+
- Pytorch 2.1.0+cu118
|
94 |
+
- Datasets 2.14.6
|
95 |
+
- Tokenizers 0.14.1
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 430993062
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:026b8c03956ad890d1a2eee6f0a2c9fab4c10cdd3e9be55b994a4ad82bb7116b
|
3 |
size 430993062
|