File size: 22,984 Bytes
545552b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 |
---
language: []
library_name: sentence-transformers
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:43371
- loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
datasets: []
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
widget:
- source_sentence: ' New Kids on the Block: Step by Step (1990/I) Step closer to
the New Kids on the Block as they share their newest songs, their hottest performances,
and their most personal thoughts. Join the guys as they look at where they came
from, where they are right now, and where they''re headed - step by step.'
sentences:
- Rare
- Rare
- thriller
- source_sentence: ' "Vampirism Bites" (2010) Vampire fan girl Belle always dreamed
of becoming a vampire, and finally got her wish on a blind date. She quickly discovers
the life of a vampire is not what books, movies and TV have told her, and learns
that Vampirism is not a 24/7 sexual and romantic fantasy. In fact, Vampirism Bites.'
sentences:
- thriller
- comedy
- Rare
- source_sentence: ' O Candidato Vieira (2005) A feature documentary about satirical
rock star Manuel Joăo Vieira who ran as a candidate for the Presidency of Portugal
in 2001. Altough he didn''t collect the number of signatures needed to officially
put him on the ballots, Vieira''s surreal campaign appearances on television talk
shows, radio and concerts took the country by storm and left everybody laughing.
A political, comedic and musical documentary!'
sentences:
- documentary
- short
- short
- source_sentence: ' Ani DiFranco: Live at Babeville (2008) On September 11 and 12,
2007, Ani DiFranco and her band (Allison Miller on drums, Todd Sickafoose on bass
and Mike Dillon on vibes and percussion) played two sold-out shows before a hometown
audience in Buffalo, New York. What made those nights so special wasn''t just
the music-that''s always special at an Ani show-but the fact that she was playing
the inaugural shows in her very own venue, "Babeville". Now the highlights of
the two shows are available on a single DVD featuring eighteen songs (two of which
have not yet appeared on studio albums), plus bonus sound check and interview
footage, all shot in high definition video and 5.1 surround sound. The result
is a must-have memento of Ani at her finest-onstage, playing her guitar and singing
with the passion, intensity, and joy that have made her a legend.'
sentences:
- drama
- Rare
- documentary
- source_sentence: ' "Oliver Twist" (1985) In a storm, in a workhouse, to a nameless
woman, young Oliver Twist is born into parish care where he''s overworked and
underfed. As he grows older his adventures take him from the countryside to London,
through harsh treatment, kindness, an undertaker, and a thieves'' dens, where
he makes friends and enemies. But all the time he is pursued by the mysterious
Monks, who hires Fagin to turn Oliver into a thief. Oliver is rescued by chance
and kind friends. But it''s a puzzle of legitimacy, inheritance, and identity
that Oliver''s friends must attempt to unravel before Monks can destroy Oliver.'
sentences:
- documentary
- drama
- drama
pipeline_tag: sentence-similarity
model-index:
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.900683492678328
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.601991593837738
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.4642871879513101
name: Cosine F1
- type: cosine_f1_threshold
value: 0.520057201385498
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.4201015531660693
name: Cosine Precision
- type: cosine_recall
value: 0.5188600940699069
name: Cosine Recall
- type: cosine_ap
value: 0.46368250557502916
name: Cosine Ap
- type: dot_accuracy
value: 0.900683492678328
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.6019916534423828
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.4642871879513101
name: Dot F1
- type: dot_f1_threshold
value: 0.5200573205947876
name: Dot F1 Threshold
- type: dot_precision
value: 0.4201015531660693
name: Dot Precision
- type: dot_recall
value: 0.5188600940699069
name: Dot Recall
- type: dot_ap
value: 0.4636826492476884
name: Dot Ap
- type: manhattan_accuracy
value: 0.900304343816287
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 13.547416687011719
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.45818772856562373
name: Manhattan F1
- type: manhattan_f1_threshold
value: 15.149662017822266
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.40953003559235857
name: Manhattan Precision
- type: manhattan_recall
value: 0.5199667988564051
name: Manhattan Recall
- type: manhattan_ap
value: 0.45787992811626
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.900683492678328
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.8921977281570435
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.4642871879513101
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.979737401008606
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.4201015531660693
name: Euclidean Precision
- type: euclidean_recall
value: 0.5188600940699069
name: Euclidean Recall
- type: euclidean_ap
value: 0.46368245984449313
name: Euclidean Ap
- type: max_accuracy
value: 0.900683492678328
name: Max Accuracy
- type: max_accuracy_threshold
value: 13.547416687011719
name: Max Accuracy Threshold
- type: max_f1
value: 0.4642871879513101
name: Max F1
- type: max_f1_threshold
value: 15.149662017822266
name: Max F1 Threshold
- type: max_precision
value: 0.4201015531660693
name: Max Precision
- type: max_recall
value: 0.5199667988564051
name: Max Recall
- type: max_ap
value: 0.4636826492476884
name: Max Ap
- task:
type: triplet
name: Triplet
dataset:
name: Unknown
type: unknown
metrics:
- type: cosine_accuracy
value: 0.6381767038642442
name: Cosine Accuracy
- type: dot_accuracy
value: 0.3618232961357558
name: Dot Accuracy
- type: manhattan_accuracy
value: 0.6227289495527069
name: Manhattan Accuracy
- type: euclidean_accuracy
value: 0.6381767038642442
name: Euclidean Accuracy
- type: max_accuracy
value: 0.6381767038642442
name: Max Accuracy
---
# SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the imdb-triplet dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
- **Maximum Sequence Length:** 256 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- imdb-triplet
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("celik-muhammed/all-MiniLM-L6-v2-finetuned-imdb")
# Run inference
sentences = [
' "Oliver Twist" (1985) In a storm, in a workhouse, to a nameless woman, young Oliver Twist is born into parish care where he\'s overworked and underfed. As he grows older his adventures take him from the countryside to London, through harsh treatment, kindness, an undertaker, and a thieves\' dens, where he makes friends and enemies. But all the time he is pursued by the mysterious Monks, who hires Fagin to turn Oliver into a thief. Oliver is rescued by chance and kind friends. But it\'s a puzzle of legitimacy, inheritance, and identity that Oliver\'s friends must attempt to unravel before Monks can destroy Oliver.',
'drama',
'documentary',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Binary Classification
* Evaluated with [<code>BinaryClassificationEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9007 |
| cosine_accuracy_threshold | 0.602 |
| cosine_f1 | 0.4643 |
| cosine_f1_threshold | 0.5201 |
| cosine_precision | 0.4201 |
| cosine_recall | 0.5189 |
| cosine_ap | 0.4637 |
| dot_accuracy | 0.9007 |
| dot_accuracy_threshold | 0.602 |
| dot_f1 | 0.4643 |
| dot_f1_threshold | 0.5201 |
| dot_precision | 0.4201 |
| dot_recall | 0.5189 |
| dot_ap | 0.4637 |
| manhattan_accuracy | 0.9003 |
| manhattan_accuracy_threshold | 13.5474 |
| manhattan_f1 | 0.4582 |
| manhattan_f1_threshold | 15.1497 |
| manhattan_precision | 0.4095 |
| manhattan_recall | 0.52 |
| manhattan_ap | 0.4579 |
| euclidean_accuracy | 0.9007 |
| euclidean_accuracy_threshold | 0.8922 |
| euclidean_f1 | 0.4643 |
| euclidean_f1_threshold | 0.9797 |
| euclidean_precision | 0.4201 |
| euclidean_recall | 0.5189 |
| euclidean_ap | 0.4637 |
| max_accuracy | 0.9007 |
| max_accuracy_threshold | 13.5474 |
| max_f1 | 0.4643 |
| max_f1_threshold | 15.1497 |
| max_precision | 0.4201 |
| max_recall | 0.52 |
| **max_ap** | **0.4637** |
#### Triplet
* Evaluated with [<code>TripletEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.TripletEvaluator)
| Metric | Value |
|:-------------------|:-----------|
| cosine_accuracy | 0.6382 |
| dot_accuracy | 0.3618 |
| manhattan_accuracy | 0.6227 |
| euclidean_accuracy | 0.6382 |
| **max_accuracy** | **0.6382** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### imdb-triplet
* Dataset: imdb-triplet
* Size: 43,371 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive |
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 31 tokens</li><li>mean: 129.65 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 3.0 tokens</li><li>max: 3 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------|
| <code> A Metafísica dos Chocolates (1967) Beautiful girls (pre-teens, adolescents, and young women) in street scenes and one of them visiting a chocolate factory, where all the workers are young women, too. A poetic text and an extract from a major Portuguese poet, convey to us the sensual feeling of choosing, unwrapping, and munching chocolate.</code> | <code>short</code> |
| <code> Thai Jashe! (2016) Thai Jashe! is an upcoming Gujarati film written and directed by Nirav Barot. It is about the struggles of a middle class man to achieve his goals in the metro-city Ahmedabad. The film stars Manoj Joshi, Malhar Thakar and Monal Gajjar.</code> | <code>drama</code> |
| <code> Vuelco (2005) A teenage boy rides out of town to meet a a girl in the countryside. She is deaf, and he explains the different means he uses to get her attention when she has not seen him. Then they say goodbye, with one poignant hug and a desperate yell punctuating their final farewell.</code> | <code>short</code> |
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: steps
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `num_train_epochs`: 5
- `warmup_ratio`: 0.1
- `fp16`: True
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: round_robin
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: steps
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 256
- `per_device_eval_batch_size`: 256
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 1
- `eval_accumulation_steps`: None
- `learning_rate`: 5e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 5
- `max_steps`: -1
- `lr_scheduler_type`: linear
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: False
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: round_robin
</details>
### Training Logs
| Epoch | Step | Training Loss | max_accuracy | max_ap |
|:------:|:----:|:-------------:|:------------:|:------:|
| 0 | 0 | - | 0.6382 | 0.2004 |
| 0.5882 | 100 | 1.7867 | - | 0.3542 |
| 1.1765 | 200 | 1.3073 | - | 0.4564 |
| 1.7647 | 300 | 1.266 | - | 0.3862 |
| 2.3529 | 400 | 1.1889 | - | 0.4011 |
| 2.9412 | 500 | 1.1554 | - | 0.4398 |
| 3.5294 | 600 | 1.1558 | - | 0.4386 |
| 4.1176 | 700 | 1.1555 | - | 0.4566 |
| 4.7059 | 800 | 1.0835 | - | 0.4637 |
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.41.2
- PyTorch: 2.1.2
- Accelerate: 0.30.1
- Datasets: 2.19.2
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |