File size: 13,721 Bytes
4c25986
1
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n    Policy class for actor-critic algorithms (has both policy and value prediction).\n    Used by A2C, PPO and the likes.\n\n    :param observation_space: Observation space\n    :param action_space: Action space\n    :param lr_schedule: Learning rate schedule (could be constant)\n    :param net_arch: The specification of the policy and value networks.\n    :param activation_fn: Activation function\n    :param ortho_init: Whether to use or not orthogonal initialization\n    :param use_sde: Whether to use State Dependent Exploration or not\n    :param log_std_init: Initial value for the log standard deviation\n    :param full_std: Whether to use (n_features x n_actions) parameters\n        for the std instead of only (n_features,) when using gSDE\n    :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n        a positive standard deviation (cf paper). It allows to keep variance\n        above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n    :param squash_output: Whether to squash the output using a tanh function,\n        this allows to ensure boundaries when using gSDE.\n    :param features_extractor_class: Features extractor to use.\n    :param features_extractor_kwargs: Keyword arguments\n        to pass to the features extractor.\n    :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n    :param normalize_images: Whether to normalize images or not,\n         dividing by 255.0 (True by default)\n    :param optimizer_class: The optimizer to use,\n        ``th.optim.Adam`` by default\n    :param optimizer_kwargs: Additional keyword arguments,\n        excluding the learning rate, to pass to the optimizer\n    ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78403d12e7a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78403d12e830>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78403d12e8c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78403d12e950>", "_build": "<function ActorCriticPolicy._build at 0x78403d12e9e0>", "forward": "<function ActorCriticPolicy.forward at 0x78403d12ea70>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78403d12eb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78403d12eb90>", "_predict": "<function ActorCriticPolicy._predict at 0x78403d12ec20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78403d12ecb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78403d12ed40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78403d12edd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x783fe0036ec0>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1733310911518090870, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOaJab0pGAu6ekxYut9yqrbnRE07L6+BOQAAgD8AAIA/s/RrPY86Errsqok6nciFNTUIBzvPe6S5AACAPwAAgD9mF1i9SPeDurLAlLsmRpk2eZAAukpuDLYAAIA/AACAP81ICj1Iy5G6r3ifujeKTrMI3Yk6Nu8IMwAAgD8AAIA/ZmYBuXsmlboe9ZG7Q1wLOI1Btrkov8G2AACAPwAAgD9mh9A8jw4+ukXKjTvNkqe0d15nuX93p7oAAIA/AACAP5pZ97tcvzS6cd1Cuo+QxzWR7vO6xUVmOQAAgD8AAIA/ZvsYvcMpeLrTL5Y6vNlENR1ZsTZi8K65AACAPwAAgD+ahaQ8w7k/uiyhuDu8FFo4mku0u/VofLoAAIA/AACAPwDQOzt71pO6aE1CuxGJmrWp03K6oldgOgAAgD8AAIA/sxo4PR8ln7k6oa86PFisNn2tgLvyjNS5AACAPwAAgD/NlMC8rl2YuqueirvGGKi1JOnPunNIEjUAAIA/AACAP2YA8byd6OE+86pnPBk5or4AI+y8wv2EvAAAAAAAAAAAM6vIvBRkiLqW2L+7c200OHPMQTqmXZC2AACAPwAAgD8mMY49+N2JPggU6r00N0K+XdB3vTa+lbwAAAAAAAAAAM29d71zS5g+IuGKPRf9ir7+QeW8zfVxPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGKNRUWEbo+MAWyUTegDjAF0lEdAkY41JxvNvHV9lChoBkdAMP86V+qioWgHS/BoCEdAkZEf29L6DXV9lChoBkdAYPYC9RJmNGgHTegDaAhHQJGR1vQ4S6F1fZQoaAZHQGcF5SWJJoVoB03oA2gIR0CRl5rAP/aQdX2UKGgGR0BkhWATZg5SaAdN6ANoCEdAkZpOdwvQGHV9lChoBkdAZHmxxkupTGgHTegDaAhHQJGeqdDpkf91fZQoaAZHQGfNtTkyULVoB03oA2gIR0CRn1RNyo4udX2UKGgGR0Bl/qULUkOaaAdN6ANoCEdAkaD3TI/7i3V9lChoBkdAYZeWldkauWgHTegDaAhHQJGhYdq+Jxh1fZQoaAZHQGA3im/FirloB03oA2gIR0CRpItV7x/edX2UKGgGR0BmhWGRFI/aaAdN6ANoCEdAkaUtsJpnH3V9lChoBkdAY9GIoE0SAmgHTegDaAhHQJGma74BV+91fZQoaAZHQGS/G03Ov+xoB03oA2gIR0CRqhRpDeCTdX2UKGgGR0A+kggX/HYIaAdL4mgIR0CRrGLDAJswdX2UKGgGR0BE6rxAjY7JaAdL0mgIR0CRsS8+iaiLdX2UKGgGR0BeHzv7WNFSaAdN6ANoCEdAkbh4AGSpznV9lChoBkdAZrsOsDGLk2gHTegDaAhHQJG6NBrvb491fZQoaAZHQGQAl1r6+FloB03oA2gIR0CR0gAcT8HfdX2UKGgGR0BpCNSydFvyaAdN6ANoCEdAkdwwGGEf1nV9lChoBkdAZE9FspG4JGgHTegDaAhHQJHeH9jwx351fZQoaAZHQGarYkNWluZoB03oA2gIR0CR3of51vETdX2UKGgGR0BlK3kiliz+aAdN6ANoCEdAkeLagqVhTnV9lChoBkdAZOhqagElmmgHTegDaAhHQJHlj4ubqhV1fZQoaAZHQGI0wKjSG8FoB03oA2gIR0CR6i5Y5ksjdX2UKGgGR0BikhhScbzcaAdN6ANoCEdAkerTyFwkxHV9lChoBkdAYnNndweeWmgHTegDaAhHQJHsjXQMQVd1fZQoaAZHQF3MgpBomHBoB03oA2gIR0CR8JUdq+JxdX2UKGgGR0Bl7yo2n88+aAdN6ANoCEdAkfGAR02ca3V9lChoBkdAZEo0svqTr2gHTegDaAhHQJH5iCkGiYd1fZQoaAZHQGTTVjqfOD9oB03oA2gIR0CR/UvUBnzydX2UKGgGR0Bj5hosZpBYaAdN6ANoCEdAkgMTmW+oL3V9lChoBkdAaHR3zMA3k2gHTegDaAhHQJIK8MEzO5d1fZQoaAZHQGV5f4yoGY9oB03oA2gIR0CSDLF/hESedX2UKGgGR0BhlCfg75mAaAdN6ANoCEdAkhAakuYhMnV9lChoBkdAYnIpeeFtbmgHTegDaAhHQJIvXg1m8NB1fZQoaAZHQGOplu3trsVoB03oA2gIR0CSMgeenQ6ZdX2UKGgGR0BoBLuv2Xb/aAdN6ANoCEdAkjKPSH/LknV9lChoBkdAZdZVMEidKGgHTegDaAhHQJI290dRzil1fZQoaAZHQGGwdv863iJoB03oA2gIR0CSOXwr1/UfdX2UKGgGR0BwlJrdnCfpaAdNcQNoCEdAkjnQT238XXV9lChoBkdATgkvTPSlWWgHS+JoCEdAkjxs3l0YCXV9lChoBkdAZ02EC/47BGgHTegDaAhHQJI9Z3zMA3l1fZQoaAZHQGC50T101ZVoB03oA2gIR0CSPe89wFTvdX2UKGgGR0Bn1/G8274BaAdN6ANoCEdAkkKmce8wpXV9lChoBkdAZeAHbh3qzWgHTegDaAhHQJJDPadtl7N1fZQoaAZHQF7M+4LCvX9oB03oA2gIR0CSSH11W8yvdX2UKGgGR0BnIYla8pTdaAdN6ANoCEdAkksOXiR4hXV9lChoBkdAYKF26ClJpWgHTegDaAhHQJJQOaScLBt1fZQoaAZHQGg93EIgNgBoB03oA2gIR0CSV4SNwR5DdX2UKGgGR0BlItVcUucuaAdN6ANoCEdAkllY+0PYnXV9lChoBkdAZAlBAOavzWgHTegDaAhHQJJdKZx7zCl1fZQoaAZHQGjF4IBzV+ZoB03oA2gIR0CSf+AiFCb+dX2UKGgGR0BmnbIaLn9vaAdN6ANoCEdAkoBRY3eenXV9lChoBkdAY9A3gk1MumgHTegDaAhHQJKE8ZKnNxF1fZQoaAZHQGPbF1SwW31oB03oA2gIR0CSh9FQl8gIdX2UKGgGR0BjwbT6SDAaaAdN6ANoCEdAkog4JZ4fOnV9lChoBkdAZsmHFglWwWgHTegDaAhHQJKLFaouPFN1fZQoaAZHQGJn1hkRSP5oB03oA2gIR0CSjC987ZFodX2UKGgGR0BnoV9ph4MXaAdN6ANoCEdAkozHgHeJpHV9lChoBkdAY3+Iu5BkZ2gHTegDaAhHQJKSj6eoUBZ1fZQoaAZHQGDEYtYjjaRoB03oA2gIR0CSk3pqynk1dX2UKGgGR0BiTzQokRjCaAdN6ANoCEdAkpqkQf6oEXV9lChoBkdAZKAPnSv1UWgHTegDaAhHQJKeGiQDFId1fZQoaAZHQGHWqr7wazhoB03oA2gIR0CSozo0ALiNdX2UKGgGR0Bjyc8/2TPjaAdN6ANoCEdAkqrKT4cm0HV9lChoBkdAZ3gDGtITXmgHTegDaAhHQJKsiaVlf7d1fZQoaAZHQGPPaef7JnxoB03oA2gIR0CSr+3ai9IxdX2UKGgGR0BnFOp++dsjaAdN6ANoCEdAktNjTBqKxnV9lChoBkdAbatzTWoWHmgHTeEDaAhHQJLTZOSGJvZ1fZQoaAZHQGG1N/WlMytoB03oA2gIR0CS2KSRKYiQdX2UKGgGR0Bkw4sunMt9aAdN6ANoCEdAkttkMw1zhnV9lChoBkdAZvJEbYK6WmgHTegDaAhHQJLbyROk+HJ1fZQoaAZHQGCTIf8uSOloB03oA2gIR0CS3p6mwaBJdX2UKGgGR0BjyJpFkQPJaAdN6ANoCEdAkt+ztG/etXV9lChoBkdAZA9N1QqI8GgHTegDaAhHQJLgVNKyv9t1fZQoaAZHQG79rDZUT+NoB02xA2gIR0CS4xjEehf0dX2UKGgGR0BdLwDRtxdZaAdN6ANoCEdAkuUY2S+xnnV9lChoBkdAP8x2GIsRQWgHS9BoCEdAkuWPy5I6KnV9lChoBkdAZGyoDPnjhmgHTegDaAhHQJLrCShakh11fZQoaAZHQGLJwgs9SuRoB03oA2gIR0CS7XRbr1M/dX2UKGgGR0BjYBR4yGi6aAdN6ANoCEdAkvJUpiI+GHV9lChoBkdAZeNp6hQFcWgHTegDaAhHQJL5lMXaakR1fZQoaAZHQGYMygf2bodoB03oA2gIR0CS+50VrRBvdX2UKGgGR0BdQQb+98JEaAdN6ANoCEdAkv/5ZSvTw3V9lChoBkdAcEQYlIEr5WgHTQUDaAhHQJMeuTdLxqh1fZQoaAZHQGQECTlkpZxoB03oA2gIR0CTIMfoRqXXdX2UKGgGR0Bk49Xq7iAEaAdN6ANoCEdAkyDJkXk5qHV9lChoBkdAaS1Y+0PYnWgHTegDaAhHQJMlaK1og3d1fZQoaAZHQGSyEpy6tkpoB03oA2gIR0CTKIZ/Tb35dX2UKGgGR0BoJHVI7NjcaAdN6ANoCEdAkyyj2FnIyXV9lChoBkdAZAicvM8oyGgHTegDaAhHQJMtSDpTuOV1fZQoaAZHQGirVawD/2loB03oA2gIR0CTMNJzT4L1dX2UKGgGR0BlpdfReC04aAdN6ANoCEdAkzPeso2GZnV9lChoBkdAZLKA4n4O+mgHTegDaAhHQJM0hz6rNnp1fZQoaAZHQGf5hHLA57xoB03oA2gIR0CTO4ZpSJj2dX2UKGgGR0BmCWvwEyLyaAdN6ANoCEdAkz5beVLSNXV9lChoBkdAYnEu/UONHmgHTegDaAhHQJNCychC+lF1fZQoaAZHQGINHTiKiwloB03oA2gIR0CTSVCEpRXPdX2UKGgGR0BhcC0x/NJOaAdN6ANoCEdAk0rK8tf5UXV9lChoBkdAY+lMM7U5MmgHTegDaAhHQJNNsosqaw51ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True  True  True  True  True  True  True  True]", "bounded_above": "[ True  True  True  True  True  True  True  True]", "_shape": [8], "low": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "low_repr": "[-90.        -90.         -5.         -5.         -3.1415927  -5.\n  -0.         -0.       ]", "high_repr": "[90.        90.         5.         5.         3.1415927  5.\n  1.         1.       ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}