File size: 2,033 Bytes
1625b6f
9d24777
d5ff904
1625b6f
 
7a7d13e
1625b6f
 
d5ff904
1625b6f
7019d36
 
 
1625b6f
 
 
 
6a52c5f
1625b6f
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
---
pipeline_tag: text-to-video
license: cc-by-nc-4.0
---
![model example](https://i.imgur.com/ze1DGOJ.png)
[example outputs](https://www.youtube.com/watch?v=HO3APT_0UA4) (courtesy of [dotsimulate](https://www.instagram.com/dotsimulate/))

# zeroscope_v2 XL
A watermark-free Modelscope-based video model capable of generating high quality video at 1024 x 576. This model was trained from the [original weights](https://huggingface.co/damo-vilab/modelscope-damo-text-to-video-synthesis) with offset noise using 9,923 clips and 29,769 tagged frames at 24 frames, 1024x576 resolution.<br />
zeroscope_v2_XL is specifically designed for upscaling content made with [zeroscope_v2_576w](https://huggingface.co/cerspense/zeroscope_v2_567w) using vid2vid in the [1111 text2video](https://github.com/kabachuha/sd-webui-text2video) extension by [kabachuha](https://github.com/kabachuha). Leveraging this model as an upscaler allows for superior overall compositions at higher resolutions, permitting faster exploration in 576x320 (or 448x256) before transitioning to a high-resolution render.<br />

zeroscope_v2_XL uses 15.3gb of vram when rendering 30 frames at 1024x576

### Using it with the 1111 text2video extension
1. Download files in the zs2_XL folder.
2. Replace the respective files in the 'stable-diffusion-webui\models\ModelScope\t2v' directory.
### Upscaling recommendations
For upscaling, it's recommended to use the 1111 extension. It works best at 1024x576 with a denoise strength between 0.66 and 0.85. Remember to use the same prompt that was used to generate the original clip.
### Known issues
Rendering at lower resolutions or fewer than 24 frames could lead to suboptimal outputs. <br />


Thanks to [camenduru](https://github.com/camenduru), [kabachuha](https://github.com/kabachuha), [ExponentialML](https://github.com/ExponentialML), [dotsimulate](https://www.instagram.com/dotsimulate/), [VANYA](https://twitter.com/veryVANYA), [polyware](https://twitter.com/polyware_ai), [tin2tin](https://github.com/tin2tin)<br />