{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f81ad180540>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675932200695954998, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAMZuVj8H1AtA9rjtv28yt77fL4a/3Tp1P+ijqj5+E8e/HTc8P4xS/r5rokC/YkITPnLZp747c+c+lsKKPtB7lj5DsZo/iDgvQEq7Cz8ttHG/oD5IvyewBD6b/9g/Bn3iPoPdnb9FcPw+ITcAwA6/Wz92ZqC+PJwOvtSXED8R1Cm/Uc5jP60avT5gKDA/BPiOv1GiSz8wtWe8TiQFv95O7L/cZQk/5vGLP9HTQT/a53C6w9xkPyVs6T+JonQ/1S6LvqayJEATvUQ/9CWBP9PJvTyD3Z2/RXD8PuyR/z4Ov1s/ajPsPm2xBEDTDKe/SiEkP+JLB0Cwgdw+7GHCPr64qb3I6Eg/sKeyvogePr9HVaI9eza+PrIl3D8OG7O+1BQGvv0snj8ynEZA9AMCPpjcnj0fsN6+QMkevRsFnj6X/Pa9g92dv0Vw/D4hNwDADr9bP6Q00j7sbKK/t3yhvuNQjT88zyC/uSnDv8vyDD6eZ4q/k6BLP6aqPLyL64Y+ec0PwELnJr9yCKY/UZM5PnmeiD7M5q4815PbPw81Lz/sCW+/QNZEv8hH9jyQsFg/iatZQIPdnb9FcPw+ITcAwA4elb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAADcTK42AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAohWwvQAAAAC5se2/AAAAAOB4uD0AAAAASID1PwAAAADpuJS9AAAAAJL/+j8AAAAA2an7vQAAAABGGvm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAedYoNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGP4wj0AAAAALEP1vwAAAAAg+uA9AAAAAKbh5D8AAAAAlcO3PQAAAAArjeo/AAAAADfUpDoAAAAAr53qvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAB02lrUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnacu9AAAAAMWB2b8AAAAAryfCvQAAAAAivv4/AAAAAB95IL0AAAAAsh0BQAAAAACNQKg8AAAAAEbu8b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA3sK21AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAR2QSPQAAAAAJmPu/AAAAAD4AnL0AAAAAyTX6PwAAAAAn/Va9AAAAAK8s7D8AAAAAvA7hvQAAAAAFZO+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJaIcjLSuyOMAWyUTegDjAF0lEdArd76gCfYjHV9lChoBkdAlVn8MAmzB2gHTegDaAhHQK3sg34sVcl1fZQoaAZHQJffEBfa6BloB03oA2gIR0Ct7QhkiD/VdX2UKGgGR0CPYq8/2TPjaAdN6ANoCEdAre1dfkWAPXV9lChoBkdAlKusTWXkYGgHTegDaAhHQK3wGNtIkJN1fZQoaAZHQJOnT6CUX55oB03oA2gIR0Ct+Wo8yN4rdX2UKGgGR0CZl/y/9Hc2aAdN6ANoCEdArfnw1xbSqnV9lChoBkdAlG8Nl/Yra2gHTegDaAhHQK36R5BTn7p1fZQoaAZHQIYm905lvqFoB03oA2gIR0Ct/RaK1og3dX2UKGgGR0CbGsVbiZOSaAdN6ANoCEdArgqkcOskp3V9lChoBkdAmFVCLIgeR2gHTegDaAhHQK4LPVLi++N1fZQoaAZHQFebbWVeKKpoB03oA2gIR0CuC5XdbgTAdX2UKGgGR0CTPj5p8F6iaAdN6ANoCEdArg5ZzvJA+3V9lChoBkdAlIQli4J/omgHTegDaAhHQK4YGzP8hs91fZQoaAZHQJih39/BnBdoB03oA2gIR0CuGJdECvHMdX2UKGgGR0CahLmPo3aSaAdN6ANoCEdArhjyH/Lkj3V9lChoBkdAjOnCyhSLqGgHTegDaAhHQK4bpzFMqSZ1fZQoaAZHQJhPvmwJPZZoB03oA2gIR0CuKF078vVWdX2UKGgGR0CKuvTIeYD1aAdN6ANoCEdArikqgkC3gHV9lChoBkdAlrTHLaEi+2gHTegDaAhHQK4pu3EyckN1fZQoaAZHQJY1qAmReTpoB03oA2gIR0CuLMSRKYiQdX2UKGgGR0BziRq8DjioaAdN6ANoCEdArjZYIOYplXV9lChoBkdAkkWDd+G47WgHTegDaAhHQK420aisXBR1fZQoaAZHQJLXEwj+rENoB03oA2gIR0CuNyt7jT8YdX2UKGgGR0CAipn2ZiNLaAdN6ANoCEdArjn0+cH4XXV9lChoBkdAerMqbz9S/GgHTegDaAhHQK5GSNJe3QV1fZQoaAZHQIsEbFuNxVBoB03oA2gIR0CuRxZFPSDzdX2UKGgGR0CSls4VymygaAdN6ANoCEdArkefv+fh/HV9lChoBkdAht3i9AX2umgHTegDaAhHQK5LHlum78N1fZQoaAZHQJVdU21lXiloB03oA2gIR0CuVRWeQMhHdX2UKGgGR0Bo9SLKmsNlaAdN6ANoCEdArlWNlI3BHnV9lChoBkdAl3Ik8eS0SmgHTegDaAhHQK5V6274BWB1fZQoaAZHQIXMEq+ajN9oB03oA2gIR0CuWMoxYaHcdX2UKGgGR0CKyl69kBjnaAdN6ANoCEdArmTGY0EX+HV9lChoBkdAlxaQt8NQTGgHTegDaAhHQK5lkRvFWGR1fZQoaAZHQJBasQg9vCNoB03oA2gIR0CuZiMniNsFdX2UKGgGR0CG9ugdwNsnaAdN6ANoCEdArmnPE/B3zXV9lChoBkdAf477MgU1ymgHTegDaAhHQK5zKj9n9Nx1fZQoaAZHQJOKFQ0oBq9oB03oA2gIR0Cuc6AezUqhdX2UKGgGR0CWNkFA3T/iaAdN6ANoCEdArnP62MKkVXV9lChoBkdAmxXl+RYA82gHTegDaAhHQK53DJbMX8B1fZQoaAZHQJuEgw35vcdoB03oA2gIR0CuhxkLYwqRdX2UKGgGR0CXFRjU/fO2aAdN6ANoCEdArofej9GZu3V9lChoBkdAmOozXBguy2gHTegDaAhHQK6Iay8jAzp1fZQoaAZHQJpNosqaw2VoB03oA2gIR0CujPCQtBfKdX2UKGgGR0Ccm6SgoPTYaAdN6ANoCEdArpZh8neBQXV9lChoBkdAmbpnkT6BRWgHTegDaAhHQK6W5/cWTHN1fZQoaAZHQJazEsnRb8poB03oA2gIR0Culz3MQmNSdX2UKGgGR0CSRiNyYG+saAdN6ANoCEdArpoJ7PY4AHV9lChoBkdAZbqInjQzDWgHTegDaAhHQK6k761stTV1fZQoaAZHQJcdN4QjD9BoB03oA2gIR0CupcB4D9wWdX2UKGgGR0CUeagjyFwlaAdN6ANoCEdArqZODjBEa3V9lChoBkdAjwRtQ0oBrGgHTegDaAhHQK6qx1A7gbZ1fZQoaAZHQJPIj/bTMJRoB03oA2gIR0CutKO2iL2pdX2UKGgGR0CU3vfmLcbjaAdN6ANoCEdArrUejXWe6XV9lChoBkdAlhruVs1sL2gHTegDaAhHQK61fqxkd3l1fZQoaAZHQJiHSgezUqhoB03oA2gIR0CuuD1feDWcdX2UKGgGR0CVS0XXiBGyaAdN6ANoCEdArsL4P07KaHV9lChoBkdAlM0hRVIZqGgHTegDaAhHQK7DvWUbDMx1fZQoaAZHQJsJOdd3SrpoB03oA2gIR0CuxEQizLOidX2UKGgGR0CWg6D1oQFtaAdN6ANoCEdArsj4ISlFdHV9lChoBkdAlhelXzUZvWgHTegDaAhHQK7TQRNh3JR1fZQoaAZHQJiyGwOe8PFoB03oA2gIR0Cu07sNc4YKdX2UKGgGR0CXdcsNlRP5aAdN6ANoCEdArtQW+0w8GXV9lChoBkdAlzefUnXummgHTegDaAhHQK7W1UcXFcZ1fZQoaAZHQHcuowIt16poB03oA2gIR0Cu4UGvfTCtdX2UKGgGR0CZSnKUmlZYaAdN6ANoCEdAruH6iblRxnV9lChoBkdAl/VFYuCf6GgHTegDaAhHQK7iinpjc211fZQoaAZHQJkDHXDm8uloB03oA2gIR0Cu5xLdvbXZdX2UKGgGR0CYPTju8brDaAdN6ANoCEdArvHBF7Uoa3V9lChoBkdAlaVnn6l+E2gHTegDaAhHQK7yOmD15B11fZQoaAZHQJZn9To+wC9oB03oA2gIR0Cu8prp7kXDdX2UKGgGR0CZ1uG0eEIxaAdN6ANoCEdArvVI7V8TjHV9lChoBkdAmKxUGzKLbmgHTegDaAhHQK7+75ZbILh1fZQoaAZHQJp+wNSZSeloB03oA2gIR0Cu/6M6JZW8dX2UKGgGR0CV0BFvQ4S6aAdN6ANoCEdArwApU1hsqXV9lChoBkdAmZ9gMtsen2gHTegDaAhHQK8EtZyuIRB1fZQoaAZHQJrmu3QUpNNoB03oA2gIR0CvEEXiiqQzdX2UKGgGR0Cfa4UONHYpaAdN6ANoCEdArxDBQ1rIo3V9lChoBkdAm5mRSgoPTWgHTegDaAhHQK8RJBj4Hop1fZQoaAZHQJwnzodMj/xoB03oA2gIR0CvE+RG2CumdX2UKGgGR0CZ9Wy0a6z3aAdN6ANoCEdArx1ke2d/a3V9lChoBkdAnFf6tDD0lWgHTegDaAhHQK8eF6TGHYZ1fZQoaAZHQJuZOyLQ5WBoB03oA2gIR0CvHqssQNCrdX2UKGgGR0CbVcEBbOeKaAdN6ANoCEdAryLdqi48U3V9lChoBkdAkhYbZJ04i2gHTegDaAhHQK8vDVuJk5J1fZQoaAZHQJGfPPPcBU9oB03oA2gIR0CvL4brC3w1dX2UKGgGR0CaVQTQVsUJaAdN6ANoCEdAry/pgCwKSnV9lChoBkdAhpeXlCCz1WgHTegDaAhHQK8yr1qWTot1fZQoaAZHQJroEzXSSeRoB03oA2gIR0CvO/bmlqJudX2UKGgGR0CcswbQkX1raAdN6ANoCEdArzx9RJmNBHV9lChoBkdAh5bNmDlHSWgHTegDaAhHQK880cx0uDl1fZQoaAZHQJvGSt5le4VoB03oA2gIR0CvQOOMuOCHdX2UKGgGR0CZql/gBLf2aAdN6ANoCEdAr01JSpBHC3V9lChoBkdAm6S7Pt2LYWgHTegDaAhHQK9Nxg4wRGt1fZQoaAZHQJPBsq9XcQBoB03oA2gIR0CvThouf29MdX2UKGgGR0CbBNyIpH7QaAdN6ANoCEdAr1DK0Y0l7nV9lChoBkdAlOste2NNrWgHTegDaAhHQK9Z/PhybQV1fZQoaAZHQJrZYF8ohIRoB03oA2gIR0CvWngymALBdX2UKGgGR0CU+gC4BmwraAdN6ANoCEdAr1rR9d/rjnVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}