Initial commit
Browse files- A2C-PandaReachDense-v2.zip +3 -0
- A2C-PandaReachDense-v2/_stable_baselines3_version +1 -0
- A2C-PandaReachDense-v2/data +94 -0
- A2C-PandaReachDense-v2/policy.optimizer.pth +3 -0
- A2C-PandaReachDense-v2/policy.pth +3 -0
- A2C-PandaReachDense-v2/pytorch_variables.pth +3 -0
- A2C-PandaReachDense-v2/system_info.txt +7 -0
- README.md +37 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
A2C-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa4e12e22c6875baf37c88a7033a21921438a86b1b89cd136ffd77f3d30eeaf4
|
3 |
+
size 106600
|
A2C-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
A2C-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f81ad185940>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f81ad1807e0>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 1,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000.0,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1675937228273563011,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA4wTvPvSTCT4sXSg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAuTWDv8U3vD+FPQu/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADjBO8+9JMJPixdKD99TNo8TUy1O4OZ3jyUaA5LAUsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.46683416 0.13435346 0.6576717 ]]",
|
60 |
+
"desired_goal": "[[-1.025077 1.470452 -0.54390746]]",
|
61 |
+
"observation": "[[0.46683416 0.13435346 0.6576717 0.0266478 0.00553278 0.02717281]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAKZ3XPEG2iD3l/H0+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[0.02632006 0.06675387 0.24803503]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB3jSwmVdIsCUhpRSlIwBbJRLMowBdJRHQLdLh5UtI091fZQoaAZoCWgPQwil2NE41A8dwJSGlFKUaBVLMmgWR0C3S8X2RJVbdX2UKGgGaAloD0MInDHMCdpkFsCUhpRSlGgVSzJoFkdAt0wIyRB/qnV9lChoBmgJaA9DCGwiMxe4nCTAlIaUUpRoFUsyaBZHQLdMR/X5FgF1fZQoaAZoCWgPQwgQs5dtp80bwJSGlFKUaBVLMmgWR0C3TIneJpFkdX2UKGgGaAloD0MImWN5Vz2AMMCUhpRSlGgVSzJoFkdAt0zK925hB3V9lChoBmgJaA9DCFlN1xNdJyPAlIaUUpRoFUsyaBZHQLdNCLXL/0d1fZQoaAZoCWgPQwjymld1VhMkwJSGlFKUaBVLMmgWR0C3TUYsyzomdX2UKGgGaAloD0MIS3hCrz+JG8CUhpRSlGgVSzJoFkdAt02JRXOnmHV9lChoBmgJaA9DCP59xoUDuSnAlIaUUpRoFUsyaBZHQLdNyN1yNn51fZQoaAZoCWgPQwjuBPuvcxsnwJSGlFKUaBVLMmgWR0C3TgnkPtladX2UKGgGaAloD0MIutdJfVnaFMCUhpRSlGgVSzJoFkdAt05LP6be/HV9lChoBmgJaA9DCAItXcE2UifAlIaUUpRoFUsyaBZHQLdOiqU/wAl1fZQoaAZoCWgPQwjAXIsWoC0gwJSGlFKUaBVLMmgWR0C3TseH31zydX2UKGgGaAloD0MItfzAVZ6wI8CUhpRSlGgVSzJoFkdAt08K/mDDj3V9lChoBmgJaA9DCCdp/pjW9hvAlIaUUpRoFUsyaBZHQLdPShh6Skl1fZQoaAZoCWgPQwjikA2ki80SwJSGlFKUaBVLMmgWR0C3T4rKq4pddX2UKGgGaAloD0MIWG/UCtOnIcCUhpRSlGgVSzJoFkdAt0/Mk2P1c3V9lChoBmgJaA9DCNdLUwQ4/RrAlIaUUpRoFUsyaBZHQLdQKxNqQBB1fZQoaAZoCWgPQwjiWu1hLwQdwJSGlFKUaBVLMmgWR0C3UKB7/n4gdX2UKGgGaAloD0MI0CozpfUHGsCUhpRSlGgVSzJoFkdAt1EFu/Dcd3V9lChoBmgJaA9DCNBGrptSbhPAlIaUUpRoFUsyaBZHQLdRc/EOy3V1fZQoaAZoCWgPQwhK628JwO8cwJSGlFKUaBVLMmgWR0C3UdaQvHtGdX2UKGgGaAloD0MI7N6KxASFHcCUhpRSlGgVSzJoFkdAt1JAxM36ynV9lChoBmgJaA9DCAG+27xxYhrAlIaUUpRoFUsyaBZHQLdSo/1QIld1fZQoaAZoCWgPQwj+SBEZVtklwJSGlFKUaBVLMmgWR0C3UxMinpB5dX2UKGgGaAloD0MIjGX6JeJlJsCUhpRSlGgVSzJoFkdAt1N6gbp/w3V9lChoBmgJaA9DCHO6LCY2PxjAlIaUUpRoFUsyaBZHQLdT3TI/7i11fZQoaAZoCWgPQwjVJk7ud9gbwJSGlFKUaBVLMmgWR0C3VEJeZ5RkdX2UKGgGaAloD0MIWi2wx0RCJMCUhpRSlGgVSzJoFkdAt1SzywwCbXV9lChoBmgJaA9DCBB1H4DUBhnAlIaUUpRoFUsyaBZHQLdVGeF+NLl1fZQoaAZoCWgPQwiv0t11NlwmwJSGlFKUaBVLMmgWR0C3VV4ToMa1dX2UKGgGaAloD0MIXTKOkewBFsCUhpRSlGgVSzJoFkdAt1WdE0BOpXV9lChoBmgJaA9DCOse2Vw1vxvAlIaUUpRoFUsyaBZHQLdV4Wi1y/91fZQoaAZoCWgPQwgfgqrRqykhwJSGlFKUaBVLMmgWR0C3ViHUx20RdX2UKGgGaAloD0MIe9gLBWwnHcCUhpRSlGgVSzJoFkdAt1ZpiCrcTXV9lChoBmgJaA9DCEzBGmfTKSHAlIaUUpRoFUsyaBZHQLdWqdMCcPR1fZQoaAZoCWgPQwjoMcozL8ciwJSGlFKUaBVLMmgWR0C3VujUqhDgdX2UKGgGaAloD0MIrRdDOdEWKcCUhpRSlGgVSzJoFkdAt1csu8K5TnV9lChoBmgJaA9DCN5VD5iHtCXAlIaUUpRoFUsyaBZHQLdXcjOs1bd1fZQoaAZoCWgPQwg+JHzvb7AmwJSGlFKUaBVLMmgWR0C3V7dORDCxdX2UKGgGaAloD0MIflLt0/GoGMCUhpRSlGgVSzJoFkdAt1f2Kk2xZHV9lChoBmgJaA9DCDIcz2dA/RfAlIaUUpRoFUsyaBZHQLdYOk5IYm91fZQoaAZoCWgPQwj+e/DapbUgwJSGlFKUaBVLMmgWR0C3WHznA6+4dX2UKGgGaAloD0MIVdtN8E3DI8CUhpRSlGgVSzJoFkdAt1jEpPRAr3V9lChoBmgJaA9DCKbvNQTH5RbAlIaUUpRoFUsyaBZHQLdZBi2Dxsl1fZQoaAZoCWgPQwjzBMJOsfIkwJSGlFKUaBVLMmgWR0C3WUlX3g1ndX2UKGgGaAloD0MIchdhinKpGsCUhpRSlGgVSzJoFkdAt1mMqz7di3V9lChoBmgJaA9DCOLmVDIAxBnAlIaUUpRoFUsyaBZHQLdZz4Kx9oh1fZQoaAZoCWgPQwi6SnfX2ZAewJSGlFKUaBVLMmgWR0C3WhEse4kNdX2UKGgGaAloD0MII9v5fmrUIsCUhpRSlGgVSzJoFkdAt1pRXT3IuHV9lChoBmgJaA9DCPlkxXB14CDAlIaUUpRoFUsyaBZHQLdalLBsQ/Z1fZQoaAZoCWgPQwiWQ4ts5wshwJSGlFKUaBVLMmgWR0C3Wtdo8IRidX2UKGgGaAloD0MI0hqDTgilJ8CUhpRSlGgVSzJoFkdAt1sYMjNY83V9lChoBmgJaA9DCBvzOuKQvR7AlIaUUpRoFUsyaBZHQLdbW+u/1xt1fZQoaAZoCWgPQwiwWS4bnXMkwJSGlFKUaBVLMmgWR0C3W5qasp5NdX2UKGgGaAloD0MItYe9UMBWJMCUhpRSlGgVSzJoFkdAt1vZhy8zynV9lChoBmgJaA9DCIi85erHxibAlIaUUpRoFUsyaBZHQLdcHi6QNkR1fZQoaAZoCWgPQwhLHeT1YBImwJSGlFKUaBVLMmgWR0C3XF0jxCpndX2UKGgGaAloD0MI662BrRLMHsCUhpRSlGgVSzJoFkdAt1ydSeiBXnV9lChoBmgJaA9DCKlsWFNZRCTAlIaUUpRoFUsyaBZHQLdc3XMQmNR1fZQoaAZoCWgPQwjWpxyTxV0fwJSGlFKUaBVLMmgWR0C3XSFF2FFldX2UKGgGaAloD0MIMqt3uB3qHMCUhpRSlGgVSzJoFkdAt11oK/mDDnV9lChoBmgJaA9DCBKFlnX/2CHAlIaUUpRoFUsyaBZHQLddprcj7hx1fZQoaAZoCWgPQwgXZqGd01QnwJSGlFKUaBVLMmgWR0C3XepblijMdX2UKGgGaAloD0MIW7QAbavpI8CUhpRSlGgVSzJoFkdAt14qBNEgGXV9lChoBmgJaA9DCOcb0T3r+hjAlIaUUpRoFUsyaBZHQLdeblLeyiV1fZQoaAZoCWgPQwiZEHNJ1WYiwJSGlFKUaBVLMmgWR0C3XrDhP0qZdX2UKGgGaAloD0MIj+OHSiNGHcCUhpRSlGgVSzJoFkdAt17ulxffGnV9lChoBmgJaA9DCFUuVP617CHAlIaUUpRoFUsyaBZHQLdfQG8VYZF1fZQoaAZoCWgPQwjx2M9iKRInwJSGlFKUaBVLMmgWR0C3X6iXyAhCdX2UKGgGaAloD0MIwmhWtg8xJcCUhpRSlGgVSzJoFkdAt2ASfOD8L3V9lChoBmgJaA9DCOXTY1sG/CDAlIaUUpRoFUsyaBZHQLdgcL/0dzZ1fZQoaAZoCWgPQwhbQdMSK7MgwJSGlFKUaBVLMmgWR0C3YNb6k691dX2UKGgGaAloD0MI+u5WlugsJMCUhpRSlGgVSzJoFkdAt2FHurp7kXV9lChoBmgJaA9DCDLlQ1A1giLAlIaUUpRoFUsyaBZHQLdhvFev6j51fZQoaAZoCWgPQwjB5bFmZNgmwJSGlFKUaBVLMmgWR0C3YicUAT7EdX2UKGgGaAloD0MIoQ+WsaG7I8CUhpRSlGgVSzJoFkdAt2KYGOdXk3V9lChoBmgJaA9DCCS1UDI57SfAlIaUUpRoFUsyaBZHQLdjBvL5h0B1fZQoaAZoCWgPQwi5jnHFxdkhwJSGlFKUaBVLMmgWR0C3Y3btiQT3dX2UKGgGaAloD0MIJxHhXwStIsCUhpRSlGgVSzJoFkdAt2PlsnAqNXV9lChoBmgJaA9DCHst6L0xLCnAlIaUUpRoFUsyaBZHQLdkSdHDrJN1fZQoaAZoCWgPQwh/arx0kygqwJSGlFKUaBVLMmgWR0C3ZI9Ni6QOdX2UKGgGaAloD0MIroGtEizOHMCUhpRSlGgVSzJoFkdAt2TPdO6/ZnV9lChoBmgJaA9DCMGr5c5MYBnAlIaUUpRoFUsyaBZHQLdlGN/vv0B1fZQoaAZoCWgPQwhrfvylRT0dwJSGlFKUaBVLMmgWR0C3ZVhS9/SZdX2UKGgGaAloD0MIjV2iemvgLMCUhpRSlGgVSzJoFkdAt2WfD7655XV9lChoBmgJaA9DCJrrNNJS+SbAlIaUUpRoFUsyaBZHQLdl37DVH4J1fZQoaAZoCWgPQwiMg0vHnEciwJSGlFKUaBVLMmgWR0C3ZiNcGC7LdX2UKGgGaAloD0MIAwr19BFwIcCUhpRSlGgVSzJoFkdAt2Zj4Glhw3V9lChoBmgJaA9DCBy0Vx8PzSXAlIaUUpRoFUsyaBZHQLdmq0Ltu1p1fZQoaAZoCWgPQwjNI38w8JwgwJSGlFKUaBVLMmgWR0C3ZvATh5xBdX2UKGgGaAloD0MIJvxSP296IcCUhpRSlGgVSzJoFkdAt2c1xMnJDHV9lChoBmgJaA9DCGMJa2PsnCLAlIaUUpRoFUsyaBZHQLdndX9R77d1fZQoaAZoCWgPQwiCVfXyO90bwJSGlFKUaBVLMmgWR0C3Z702P1cudX2UKGgGaAloD0MI/KvHfasFKsCUhpRSlGgVSzJoFkdAt2f874i5eHV9lChoBmgJaA9DCFByh01kziTAlIaUUpRoFUsyaBZHQLdoPbVjI7x1fZQoaAZoCWgPQwhB0xIrozEnwJSGlFKUaBVLMmgWR0C3aILh3qzJdX2UKGgGaAloD0MI1CgkmdUrHsCUhpRSlGgVSzJoFkdAt2jIMI/qxHV9lChoBmgJaA9DCAD/lCpRdiXAlIaUUpRoFUsyaBZHQLdpCb7TDwZ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 200000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
A2C-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48495b0ed56886058f7d4c9613d97da0d6bd082dd19b496505acb110625953e3
|
3 |
+
size 44734
|
A2C-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0596fe165bd5b2f73ec92e22fc95c32d3d6d66fcf0aa5c7a9f2097678d68bbab
|
3 |
+
size 46014
|
A2C-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
A2C-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -8.24 +/- 1.88
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f81ad185940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f81ad1807e0>"}, "verbose": 0, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000000, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675937228273563011, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA4wTvPvSTCT4sXSg/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAuTWDv8U3vD+FPQu/lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADjBO8+9JMJPixdKD99TNo8TUy1O4OZ3jyUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46683416 0.13435346 0.6576717 ]]", "desired_goal": "[[-1.025077 1.470452 -0.54390746]]", "observation": "[[0.46683416 0.13435346 0.6576717 0.0266478 0.00553278 0.02717281]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVKwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAA6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAKZ3XPEG2iD3l/H0+lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWGAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LAUsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[0.02632006 0.06675387 0.24803503]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIB3jSwmVdIsCUhpRSlIwBbJRLMowBdJRHQLdLh5UtI091fZQoaAZoCWgPQwil2NE41A8dwJSGlFKUaBVLMmgWR0C3S8X2RJVbdX2UKGgGaAloD0MInDHMCdpkFsCUhpRSlGgVSzJoFkdAt0wIyRB/qnV9lChoBmgJaA9DCGwiMxe4nCTAlIaUUpRoFUsyaBZHQLdMR/X5FgF1fZQoaAZoCWgPQwgQs5dtp80bwJSGlFKUaBVLMmgWR0C3TIneJpFkdX2UKGgGaAloD0MImWN5Vz2AMMCUhpRSlGgVSzJoFkdAt0zK925hB3V9lChoBmgJaA9DCFlN1xNdJyPAlIaUUpRoFUsyaBZHQLdNCLXL/0d1fZQoaAZoCWgPQwjymld1VhMkwJSGlFKUaBVLMmgWR0C3TUYsyzomdX2UKGgGaAloD0MIS3hCrz+JG8CUhpRSlGgVSzJoFkdAt02JRXOnmHV9lChoBmgJaA9DCP59xoUDuSnAlIaUUpRoFUsyaBZHQLdNyN1yNn51fZQoaAZoCWgPQwjuBPuvcxsnwJSGlFKUaBVLMmgWR0C3TgnkPtladX2UKGgGaAloD0MIutdJfVnaFMCUhpRSlGgVSzJoFkdAt05LP6be/HV9lChoBmgJaA9DCAItXcE2UifAlIaUUpRoFUsyaBZHQLdOiqU/wAl1fZQoaAZoCWgPQwjAXIsWoC0gwJSGlFKUaBVLMmgWR0C3TseH31zydX2UKGgGaAloD0MItfzAVZ6wI8CUhpRSlGgVSzJoFkdAt08K/mDDj3V9lChoBmgJaA9DCCdp/pjW9hvAlIaUUpRoFUsyaBZHQLdPShh6Skl1fZQoaAZoCWgPQwjikA2ki80SwJSGlFKUaBVLMmgWR0C3T4rKq4pddX2UKGgGaAloD0MIWG/UCtOnIcCUhpRSlGgVSzJoFkdAt0/Mk2P1c3V9lChoBmgJaA9DCNdLUwQ4/RrAlIaUUpRoFUsyaBZHQLdQKxNqQBB1fZQoaAZoCWgPQwjiWu1hLwQdwJSGlFKUaBVLMmgWR0C3UKB7/n4gdX2UKGgGaAloD0MI0CozpfUHGsCUhpRSlGgVSzJoFkdAt1EFu/Dcd3V9lChoBmgJaA9DCNBGrptSbhPAlIaUUpRoFUsyaBZHQLdRc/EOy3V1fZQoaAZoCWgPQwhK628JwO8cwJSGlFKUaBVLMmgWR0C3UdaQvHtGdX2UKGgGaAloD0MI7N6KxASFHcCUhpRSlGgVSzJoFkdAt1JAxM36ynV9lChoBmgJaA9DCAG+27xxYhrAlIaUUpRoFUsyaBZHQLdSo/1QIld1fZQoaAZoCWgPQwj+SBEZVtklwJSGlFKUaBVLMmgWR0C3UxMinpB5dX2UKGgGaAloD0MIjGX6JeJlJsCUhpRSlGgVSzJoFkdAt1N6gbp/w3V9lChoBmgJaA9DCHO6LCY2PxjAlIaUUpRoFUsyaBZHQLdT3TI/7i11fZQoaAZoCWgPQwjVJk7ud9gbwJSGlFKUaBVLMmgWR0C3VEJeZ5RkdX2UKGgGaAloD0MIWi2wx0RCJMCUhpRSlGgVSzJoFkdAt1SzywwCbXV9lChoBmgJaA9DCBB1H4DUBhnAlIaUUpRoFUsyaBZHQLdVGeF+NLl1fZQoaAZoCWgPQwiv0t11NlwmwJSGlFKUaBVLMmgWR0C3VV4ToMa1dX2UKGgGaAloD0MIXTKOkewBFsCUhpRSlGgVSzJoFkdAt1WdE0BOpXV9lChoBmgJaA9DCOse2Vw1vxvAlIaUUpRoFUsyaBZHQLdV4Wi1y/91fZQoaAZoCWgPQwgfgqrRqykhwJSGlFKUaBVLMmgWR0C3ViHUx20RdX2UKGgGaAloD0MIe9gLBWwnHcCUhpRSlGgVSzJoFkdAt1ZpiCrcTXV9lChoBmgJaA9DCEzBGmfTKSHAlIaUUpRoFUsyaBZHQLdWqdMCcPR1fZQoaAZoCWgPQwjoMcozL8ciwJSGlFKUaBVLMmgWR0C3VujUqhDgdX2UKGgGaAloD0MIrRdDOdEWKcCUhpRSlGgVSzJoFkdAt1csu8K5TnV9lChoBmgJaA9DCN5VD5iHtCXAlIaUUpRoFUsyaBZHQLdXcjOs1bd1fZQoaAZoCWgPQwg+JHzvb7AmwJSGlFKUaBVLMmgWR0C3V7dORDCxdX2UKGgGaAloD0MIflLt0/GoGMCUhpRSlGgVSzJoFkdAt1f2Kk2xZHV9lChoBmgJaA9DCDIcz2dA/RfAlIaUUpRoFUsyaBZHQLdYOk5IYm91fZQoaAZoCWgPQwj+e/DapbUgwJSGlFKUaBVLMmgWR0C3WHznA6+4dX2UKGgGaAloD0MIVdtN8E3DI8CUhpRSlGgVSzJoFkdAt1jEpPRAr3V9lChoBmgJaA9DCKbvNQTH5RbAlIaUUpRoFUsyaBZHQLdZBi2Dxsl1fZQoaAZoCWgPQwjzBMJOsfIkwJSGlFKUaBVLMmgWR0C3WUlX3g1ndX2UKGgGaAloD0MIchdhinKpGsCUhpRSlGgVSzJoFkdAt1mMqz7di3V9lChoBmgJaA9DCOLmVDIAxBnAlIaUUpRoFUsyaBZHQLdZz4Kx9oh1fZQoaAZoCWgPQwi6SnfX2ZAewJSGlFKUaBVLMmgWR0C3WhEse4kNdX2UKGgGaAloD0MII9v5fmrUIsCUhpRSlGgVSzJoFkdAt1pRXT3IuHV9lChoBmgJaA9DCPlkxXB14CDAlIaUUpRoFUsyaBZHQLdalLBsQ/Z1fZQoaAZoCWgPQwiWQ4ts5wshwJSGlFKUaBVLMmgWR0C3Wtdo8IRidX2UKGgGaAloD0MI0hqDTgilJ8CUhpRSlGgVSzJoFkdAt1sYMjNY83V9lChoBmgJaA9DCBvzOuKQvR7AlIaUUpRoFUsyaBZHQLdbW+u/1xt1fZQoaAZoCWgPQwiwWS4bnXMkwJSGlFKUaBVLMmgWR0C3W5qasp5NdX2UKGgGaAloD0MItYe9UMBWJMCUhpRSlGgVSzJoFkdAt1vZhy8zynV9lChoBmgJaA9DCIi85erHxibAlIaUUpRoFUsyaBZHQLdcHi6QNkR1fZQoaAZoCWgPQwhLHeT1YBImwJSGlFKUaBVLMmgWR0C3XF0jxCpndX2UKGgGaAloD0MI662BrRLMHsCUhpRSlGgVSzJoFkdAt1ydSeiBXnV9lChoBmgJaA9DCKlsWFNZRCTAlIaUUpRoFUsyaBZHQLdc3XMQmNR1fZQoaAZoCWgPQwjWpxyTxV0fwJSGlFKUaBVLMmgWR0C3XSFF2FFldX2UKGgGaAloD0MIMqt3uB3qHMCUhpRSlGgVSzJoFkdAt11oK/mDDnV9lChoBmgJaA9DCBKFlnX/2CHAlIaUUpRoFUsyaBZHQLddprcj7hx1fZQoaAZoCWgPQwgXZqGd01QnwJSGlFKUaBVLMmgWR0C3XepblijMdX2UKGgGaAloD0MIW7QAbavpI8CUhpRSlGgVSzJoFkdAt14qBNEgGXV9lChoBmgJaA9DCOcb0T3r+hjAlIaUUpRoFUsyaBZHQLdeblLeyiV1fZQoaAZoCWgPQwiZEHNJ1WYiwJSGlFKUaBVLMmgWR0C3XrDhP0qZdX2UKGgGaAloD0MIj+OHSiNGHcCUhpRSlGgVSzJoFkdAt17ulxffGnV9lChoBmgJaA9DCFUuVP617CHAlIaUUpRoFUsyaBZHQLdfQG8VYZF1fZQoaAZoCWgPQwjx2M9iKRInwJSGlFKUaBVLMmgWR0C3X6iXyAhCdX2UKGgGaAloD0MIwmhWtg8xJcCUhpRSlGgVSzJoFkdAt2ASfOD8L3V9lChoBmgJaA9DCOXTY1sG/CDAlIaUUpRoFUsyaBZHQLdgcL/0dzZ1fZQoaAZoCWgPQwhbQdMSK7MgwJSGlFKUaBVLMmgWR0C3YNb6k691dX2UKGgGaAloD0MI+u5WlugsJMCUhpRSlGgVSzJoFkdAt2FHurp7kXV9lChoBmgJaA9DCDLlQ1A1giLAlIaUUpRoFUsyaBZHQLdhvFev6j51fZQoaAZoCWgPQwjB5bFmZNgmwJSGlFKUaBVLMmgWR0C3YicUAT7EdX2UKGgGaAloD0MIoQ+WsaG7I8CUhpRSlGgVSzJoFkdAt2KYGOdXk3V9lChoBmgJaA9DCCS1UDI57SfAlIaUUpRoFUsyaBZHQLdjBvL5h0B1fZQoaAZoCWgPQwi5jnHFxdkhwJSGlFKUaBVLMmgWR0C3Y3btiQT3dX2UKGgGaAloD0MIJxHhXwStIsCUhpRSlGgVSzJoFkdAt2PlsnAqNXV9lChoBmgJaA9DCHst6L0xLCnAlIaUUpRoFUsyaBZHQLdkSdHDrJN1fZQoaAZoCWgPQwh/arx0kygqwJSGlFKUaBVLMmgWR0C3ZI9Ni6QOdX2UKGgGaAloD0MIroGtEizOHMCUhpRSlGgVSzJoFkdAt2TPdO6/ZnV9lChoBmgJaA9DCMGr5c5MYBnAlIaUUpRoFUsyaBZHQLdlGN/vv0B1fZQoaAZoCWgPQwhrfvylRT0dwJSGlFKUaBVLMmgWR0C3ZVhS9/SZdX2UKGgGaAloD0MIjV2iemvgLMCUhpRSlGgVSzJoFkdAt2WfD7655XV9lChoBmgJaA9DCJrrNNJS+SbAlIaUUpRoFUsyaBZHQLdl37DVH4J1fZQoaAZoCWgPQwiMg0vHnEciwJSGlFKUaBVLMmgWR0C3ZiNcGC7LdX2UKGgGaAloD0MIAwr19BFwIcCUhpRSlGgVSzJoFkdAt2Zj4Glhw3V9lChoBmgJaA9DCBy0Vx8PzSXAlIaUUpRoFUsyaBZHQLdmq0Ltu1p1fZQoaAZoCWgPQwjNI38w8JwgwJSGlFKUaBVLMmgWR0C3ZvATh5xBdX2UKGgGaAloD0MIJvxSP296IcCUhpRSlGgVSzJoFkdAt2c1xMnJDHV9lChoBmgJaA9DCGMJa2PsnCLAlIaUUpRoFUsyaBZHQLdndX9R77d1fZQoaAZoCWgPQwiCVfXyO90bwJSGlFKUaBVLMmgWR0C3Z702P1cudX2UKGgGaAloD0MI/KvHfasFKsCUhpRSlGgVSzJoFkdAt2f874i5eHV9lChoBmgJaA9DCFByh01kziTAlIaUUpRoFUsyaBZHQLdoPbVjI7x1fZQoaAZoCWgPQwhB0xIrozEnwJSGlFKUaBVLMmgWR0C3aILh3qzJdX2UKGgGaAloD0MI1CgkmdUrHsCUhpRSlGgVSzJoFkdAt2jIMI/qxHV9lChoBmgJaA9DCAD/lCpRdiXAlIaUUpRoFUsyaBZHQLdpCb7TDwZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 200000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (965 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -8.237512532807887, "std_reward": 1.884317652587588, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-09T12:17:51.253805"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5d963243bc5d9698aea16ec797fc7c2269ec202318e32be933a99ea6239c0bc1
|
3 |
+
size 3056
|