Upload 2 files
Browse files- api_example.py +168 -0
- workflow_api_format.json +189 -0
api_example.py
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
import json
|
| 3 |
+
import random
|
| 4 |
+
import time
|
| 5 |
+
import requests
|
| 6 |
+
import base64
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
|
| 9 |
+
def get_image_as_base64(url):
|
| 10 |
+
try:
|
| 11 |
+
response = requests.get(url)
|
| 12 |
+
response.raise_for_status()
|
| 13 |
+
image_data = BytesIO(response.content)
|
| 14 |
+
base64_image = base64.b64encode(image_data.getvalue()).decode('utf-8')
|
| 15 |
+
return base64_image
|
| 16 |
+
except requests.exceptions.RequestException as ex:
|
| 17 |
+
print(f'Failed to retrieve image: {ex}')
|
| 18 |
+
return None
|
| 19 |
+
|
| 20 |
+
def queue_prompt(url, prompt):
|
| 21 |
+
p = {"prompt": prompt}
|
| 22 |
+
data = json.dumps(p).encode('utf-8')
|
| 23 |
+
prompt_url = f"{url}/prompt"
|
| 24 |
+
try:
|
| 25 |
+
r = requests.post(prompt_url, data=data)
|
| 26 |
+
r.raise_for_status()
|
| 27 |
+
return r.json()
|
| 28 |
+
except requests.exceptions.RequestException as ex:
|
| 29 |
+
print(f'POST {prompt_url} failed: {ex}')
|
| 30 |
+
return None
|
| 31 |
+
|
| 32 |
+
def get_queue(url):
|
| 33 |
+
queue_url = f"{url}/queue"
|
| 34 |
+
try:
|
| 35 |
+
r = requests.get(queue_url)
|
| 36 |
+
r.raise_for_status()
|
| 37 |
+
return r.json()
|
| 38 |
+
except requests.exceptions.RequestException as ex:
|
| 39 |
+
print(f'GET {queue_url} failed: {ex}')
|
| 40 |
+
return None
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
def get_history(url, prompt_id):
|
| 44 |
+
history_url = f"{url}/history/{prompt_id}"
|
| 45 |
+
try:
|
| 46 |
+
r = requests.get(history_url)
|
| 47 |
+
r.raise_for_status()
|
| 48 |
+
return r.json()
|
| 49 |
+
except requests.exceptions.RequestException as ex:
|
| 50 |
+
print(f'GET {history_url} failed: {ex}')
|
| 51 |
+
return None
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def main(ip, port, filepath, prompt=None, steps=None, seed=None, cfg=None, width=None, height=None, lora_name=None, lora_scale=None):
|
| 55 |
+
url = f"http://{ip}:{port}"
|
| 56 |
+
|
| 57 |
+
with open(filepath, 'r') as file:
|
| 58 |
+
prompt_text = json.load(file)
|
| 59 |
+
|
| 60 |
+
# Update prompt_text with provided arguments
|
| 61 |
+
if prompt is not None:
|
| 62 |
+
prompt_text["6"]["inputs"]["text"] = prompt
|
| 63 |
+
if steps is not None:
|
| 64 |
+
prompt_text["17"]["inputs"]["steps"] = steps
|
| 65 |
+
if seed is not None:
|
| 66 |
+
prompt_text["25"]["inputs"]["noise_seed"] = seed
|
| 67 |
+
else:
|
| 68 |
+
prompt_text["25"]["inputs"]["noise_seed"] = random.randint(0, 1000000000000000)
|
| 69 |
+
if cfg is not None:
|
| 70 |
+
prompt_text["26"]["inputs"]["guidance"] = cfg
|
| 71 |
+
if width is not None:
|
| 72 |
+
prompt_text["27"]["inputs"]["width"] = width
|
| 73 |
+
if height is not None:
|
| 74 |
+
prompt_text["27"]["inputs"]["height"] = height
|
| 75 |
+
if lora_name is not None:
|
| 76 |
+
prompt_text["30"]["inputs"]["lora_name"] = lora_name
|
| 77 |
+
if lora_scale is not None:
|
| 78 |
+
prompt_text["30"]["inputs"]["strength_model"] = lora_scale
|
| 79 |
+
|
| 80 |
+
# Print the updated values
|
| 81 |
+
print(f'Prompt: {prompt_text["6"]["inputs"]["text"]}')
|
| 82 |
+
print(f'Steps: {prompt_text["17"]["inputs"]["steps"]}')
|
| 83 |
+
print(f'Seed: {prompt_text["25"]["inputs"]["noise_seed"]}')
|
| 84 |
+
print(f'CFG: {prompt_text["26"]["inputs"]["guidance"]}')
|
| 85 |
+
print(f'Width: {prompt_text["27"]["inputs"]["width"]}')
|
| 86 |
+
print(f'Height: {prompt_text["27"]["inputs"]["height"]}')
|
| 87 |
+
print(f'LoRA Name: {prompt_text["30"]["inputs"]["lora_name"]}')
|
| 88 |
+
print(f'LoRA Scale: {prompt_text["30"]["inputs"]["strength_model"]}')
|
| 89 |
+
|
| 90 |
+
response1 = queue_prompt(url, prompt_text)
|
| 91 |
+
if response1 is None:
|
| 92 |
+
print("Failed to queue the prompt.")
|
| 93 |
+
return
|
| 94 |
+
|
| 95 |
+
prompt_id = response1['prompt_id']
|
| 96 |
+
print(f'Prompt ID: {prompt_id}')
|
| 97 |
+
print('-' * 20)
|
| 98 |
+
|
| 99 |
+
while True:
|
| 100 |
+
time.sleep(5)
|
| 101 |
+
queue_response = get_queue(url)
|
| 102 |
+
if queue_response is None:
|
| 103 |
+
continue
|
| 104 |
+
|
| 105 |
+
queue_pending = queue_response.get('queue_pending', [])
|
| 106 |
+
queue_running = queue_response.get('queue_running', [])
|
| 107 |
+
|
| 108 |
+
# Check position in queue
|
| 109 |
+
for position, item in enumerate(queue_pending):
|
| 110 |
+
if item[1] == prompt_id:
|
| 111 |
+
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is in position {position + 1} in the queue.')
|
| 112 |
+
|
| 113 |
+
# Check if the prompt is currently running
|
| 114 |
+
for item in queue_running:
|
| 115 |
+
if item[1] == prompt_id:
|
| 116 |
+
print(f'Queue running: {len(queue_running)}, Queue pending: {len(queue_pending)}, Workflow is currently running.')
|
| 117 |
+
break
|
| 118 |
+
|
| 119 |
+
if not any(prompt_id in item for item in queue_pending + queue_running):
|
| 120 |
+
break
|
| 121 |
+
|
| 122 |
+
history_response = get_history(url, prompt_id)
|
| 123 |
+
if history_response is None:
|
| 124 |
+
print("Failed to retrieve history.")
|
| 125 |
+
return
|
| 126 |
+
|
| 127 |
+
output_info = history_response.get(prompt_id, {}).get('outputs', {}).get('9', {}).get('images', [{}])[0]
|
| 128 |
+
filename = output_info.get('filename', 'unknown.png')
|
| 129 |
+
output_url = f"{url}/output/{filename}"
|
| 130 |
+
|
| 131 |
+
print(f"Output URL: {output_url}")
|
| 132 |
+
|
| 133 |
+
# Get base64 encoded image
|
| 134 |
+
base64_image = get_image_as_base64(output_url)
|
| 135 |
+
if base64_image:
|
| 136 |
+
print("Base64 encoded image:")
|
| 137 |
+
print(base64_image)
|
| 138 |
+
else:
|
| 139 |
+
print("Failed to retrieve base64 encoded image.")
|
| 140 |
+
|
| 141 |
+
return {
|
| 142 |
+
"output_url": output_url,
|
| 143 |
+
"base64_image": base64_image
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
parser = argparse.ArgumentParser(description='Add a prompt to the queue and wait for the output.')
|
| 149 |
+
parser.add_argument('--ip', type=str, required=True, help='The public IP address of the pod')
|
| 150 |
+
parser.add_argument('--port', type=int, required=True, help='The external port of the pod')
|
| 151 |
+
parser.add_argument('--filepath', type=str, required=True, help='The path to the JSON file containing the workflow in api format')
|
| 152 |
+
parser.add_argument('--prompt', type=str, help='The prompt to use for the workflow')
|
| 153 |
+
parser.add_argument('--steps', type=int, help='Number of steps for the sampler')
|
| 154 |
+
parser.add_argument('--seed', type=int, help='Seed for the noise generator')
|
| 155 |
+
parser.add_argument('--cfg', type=float, help='Classifier-free guidance scale')
|
| 156 |
+
parser.add_argument('--width', type=int, help='Width of the output image')
|
| 157 |
+
parser.add_argument('--height', type=int, help='Height of the output image')
|
| 158 |
+
parser.add_argument('--lora_name', type=str, help='Name of the LoRA to use')
|
| 159 |
+
parser.add_argument('--lora_scale', type=float, help='Scale of the LoRA effect')
|
| 160 |
+
|
| 161 |
+
args = parser.parse_args()
|
| 162 |
+
result = main(args.ip, args.port, args.filepath, args.prompt, args.steps, args.seed, args.cfg, args.width, args.height, args.lora_name, args.lora_scale)
|
| 163 |
+
|
| 164 |
+
# If you want to save the base64 image to a file
|
| 165 |
+
if result and result["base64_image"]:
|
| 166 |
+
with open("output_image.txt", "w") as f:
|
| 167 |
+
f.write(result["base64_image"])
|
| 168 |
+
print("Base64 image saved to output_image.txt")
|
workflow_api_format.json
ADDED
|
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"6": {
|
| 3 |
+
"inputs": {
|
| 4 |
+
"text": "Beautiful young woman, age 25, with long braided platinum blonde hair and bright magenta eyes, looking seductively and holding a large red-scaled dragon egg. The words \"Valyrian Tech\" are in a large sleek and stylistic font in the middle of the image.",
|
| 5 |
+
"clip": [
|
| 6 |
+
"11",
|
| 7 |
+
0
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
"class_type": "CLIPTextEncode",
|
| 11 |
+
"_meta": {
|
| 12 |
+
"title": "CLIP Text Encode (Positive Prompt)"
|
| 13 |
+
}
|
| 14 |
+
},
|
| 15 |
+
"8": {
|
| 16 |
+
"inputs": {
|
| 17 |
+
"samples": [
|
| 18 |
+
"13",
|
| 19 |
+
0
|
| 20 |
+
],
|
| 21 |
+
"vae": [
|
| 22 |
+
"10",
|
| 23 |
+
0
|
| 24 |
+
]
|
| 25 |
+
},
|
| 26 |
+
"class_type": "VAEDecode",
|
| 27 |
+
"_meta": {
|
| 28 |
+
"title": "VAE Decode"
|
| 29 |
+
}
|
| 30 |
+
},
|
| 31 |
+
"9": {
|
| 32 |
+
"inputs": {
|
| 33 |
+
"filename_prefix": "ComfyUI",
|
| 34 |
+
"images": [
|
| 35 |
+
"8",
|
| 36 |
+
0
|
| 37 |
+
]
|
| 38 |
+
},
|
| 39 |
+
"class_type": "SaveImage",
|
| 40 |
+
"_meta": {
|
| 41 |
+
"title": "Save Image"
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"10": {
|
| 45 |
+
"inputs": {
|
| 46 |
+
"vae_name": "ae.sft"
|
| 47 |
+
},
|
| 48 |
+
"class_type": "VAELoader",
|
| 49 |
+
"_meta": {
|
| 50 |
+
"title": "Load VAE"
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"11": {
|
| 54 |
+
"inputs": {
|
| 55 |
+
"clip_name1": "t5xxl_fp16.safetensors",
|
| 56 |
+
"clip_name2": "clip_l.safetensors",
|
| 57 |
+
"type": "flux"
|
| 58 |
+
},
|
| 59 |
+
"class_type": "DualCLIPLoader",
|
| 60 |
+
"_meta": {
|
| 61 |
+
"title": "DualCLIPLoader"
|
| 62 |
+
}
|
| 63 |
+
},
|
| 64 |
+
"12": {
|
| 65 |
+
"inputs": {
|
| 66 |
+
"unet_name": "flux1-dev.sft",
|
| 67 |
+
"weight_dtype": "default"
|
| 68 |
+
},
|
| 69 |
+
"class_type": "UNETLoader",
|
| 70 |
+
"_meta": {
|
| 71 |
+
"title": "Load Diffusion Model"
|
| 72 |
+
}
|
| 73 |
+
},
|
| 74 |
+
"13": {
|
| 75 |
+
"inputs": {
|
| 76 |
+
"noise": [
|
| 77 |
+
"25",
|
| 78 |
+
0
|
| 79 |
+
],
|
| 80 |
+
"guider": [
|
| 81 |
+
"22",
|
| 82 |
+
0
|
| 83 |
+
],
|
| 84 |
+
"sampler": [
|
| 85 |
+
"16",
|
| 86 |
+
0
|
| 87 |
+
],
|
| 88 |
+
"sigmas": [
|
| 89 |
+
"17",
|
| 90 |
+
0
|
| 91 |
+
],
|
| 92 |
+
"latent_image": [
|
| 93 |
+
"27",
|
| 94 |
+
0
|
| 95 |
+
]
|
| 96 |
+
},
|
| 97 |
+
"class_type": "SamplerCustomAdvanced",
|
| 98 |
+
"_meta": {
|
| 99 |
+
"title": "SamplerCustomAdvanced"
|
| 100 |
+
}
|
| 101 |
+
},
|
| 102 |
+
"16": {
|
| 103 |
+
"inputs": {
|
| 104 |
+
"sampler_name": "euler"
|
| 105 |
+
},
|
| 106 |
+
"class_type": "KSamplerSelect",
|
| 107 |
+
"_meta": {
|
| 108 |
+
"title": "KSamplerSelect"
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
"17": {
|
| 112 |
+
"inputs": {
|
| 113 |
+
"scheduler": "simple",
|
| 114 |
+
"steps": 30,
|
| 115 |
+
"denoise": 1,
|
| 116 |
+
"model": [
|
| 117 |
+
"12",
|
| 118 |
+
0
|
| 119 |
+
]
|
| 120 |
+
},
|
| 121 |
+
"class_type": "BasicScheduler",
|
| 122 |
+
"_meta": {
|
| 123 |
+
"title": "BasicScheduler"
|
| 124 |
+
}
|
| 125 |
+
},
|
| 126 |
+
"22": {
|
| 127 |
+
"inputs": {
|
| 128 |
+
"model": [
|
| 129 |
+
"30",
|
| 130 |
+
0
|
| 131 |
+
],
|
| 132 |
+
"conditioning": [
|
| 133 |
+
"26",
|
| 134 |
+
0
|
| 135 |
+
]
|
| 136 |
+
},
|
| 137 |
+
"class_type": "BasicGuider",
|
| 138 |
+
"_meta": {
|
| 139 |
+
"title": "BasicGuider"
|
| 140 |
+
}
|
| 141 |
+
},
|
| 142 |
+
"25": {
|
| 143 |
+
"inputs": {
|
| 144 |
+
"noise_seed": 1198860368
|
| 145 |
+
},
|
| 146 |
+
"class_type": "RandomNoise",
|
| 147 |
+
"_meta": {
|
| 148 |
+
"title": "RandomNoise"
|
| 149 |
+
}
|
| 150 |
+
},
|
| 151 |
+
"26": {
|
| 152 |
+
"inputs": {
|
| 153 |
+
"guidance": 3.5,
|
| 154 |
+
"conditioning": [
|
| 155 |
+
"6",
|
| 156 |
+
0
|
| 157 |
+
]
|
| 158 |
+
},
|
| 159 |
+
"class_type": "FluxGuidance",
|
| 160 |
+
"_meta": {
|
| 161 |
+
"title": "FluxGuidance"
|
| 162 |
+
}
|
| 163 |
+
},
|
| 164 |
+
"27": {
|
| 165 |
+
"inputs": {
|
| 166 |
+
"width": 1344,
|
| 167 |
+
"height": 768,
|
| 168 |
+
"batch_size": 1
|
| 169 |
+
},
|
| 170 |
+
"class_type": "EmptySD3LatentImage",
|
| 171 |
+
"_meta": {
|
| 172 |
+
"title": "EmptySD3LatentImage"
|
| 173 |
+
}
|
| 174 |
+
},
|
| 175 |
+
"30": {
|
| 176 |
+
"inputs": {
|
| 177 |
+
"lora_name": "FLUXTest2-000009.safetensors",
|
| 178 |
+
"strength_model": 0.8,
|
| 179 |
+
"model": [
|
| 180 |
+
"12",
|
| 181 |
+
0
|
| 182 |
+
]
|
| 183 |
+
},
|
| 184 |
+
"class_type": "LoraLoaderModelOnly",
|
| 185 |
+
"_meta": {
|
| 186 |
+
"title": "LoraLoaderModelOnly"
|
| 187 |
+
}
|
| 188 |
+
}
|
| 189 |
+
}
|