cgt commited on
Commit
b5ed77d
·
1 Parent(s): 588df3b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -8
README.md CHANGED
@@ -16,7 +16,7 @@ should probably proofread and complete it, then remove this comment. -->
16
 
17
  This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on the cmrc2018 dataset.
18
  It achieves the following results on the evaluation set:
19
- - Loss: 0.8522
20
 
21
  ## Model description
22
 
@@ -35,23 +35,21 @@ More information needed
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
- - learning_rate: 1e-05
39
  - train_batch_size: 16
40
  - eval_batch_size: 16
41
  - seed: 42
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: linear
44
- - num_epochs: 5
45
 
46
  ### Training results
47
 
48
  | Training Loss | Epoch | Step | Validation Loss |
49
  |:-------------:|:-----:|:----:|:---------------:|
50
- | 1.0891 | 1.0 | 1200 | 0.7374 |
51
- | 0.712 | 2.0 | 2400 | 0.6467 |
52
- | 0.5068 | 3.0 | 3600 | 0.7374 |
53
- | 0.3865 | 4.0 | 4800 | 0.7852 |
54
- | 0.3197 | 5.0 | 6000 | 0.8522 |
55
 
56
 
57
  ### Framework versions
 
16
 
17
  This model is a fine-tuned version of [hfl/chinese-pert-large](https://huggingface.co/hfl/chinese-pert-large) on the cmrc2018 dataset.
18
  It achieves the following results on the evaluation set:
19
+ - Loss: 0.8020
20
 
21
  ## Model description
22
 
 
35
  ### Training hyperparameters
36
 
37
  The following hyperparameters were used during training:
38
+ - learning_rate: 3e-05
39
  - train_batch_size: 16
40
  - eval_batch_size: 16
41
  - seed: 42
42
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
43
  - lr_scheduler_type: linear
44
+ - num_epochs: 3
45
 
46
  ### Training results
47
 
48
  | Training Loss | Epoch | Step | Validation Loss |
49
  |:-------------:|:-----:|:----:|:---------------:|
50
+ | 1.3897 | 1.0 | 1200 | 1.1025 |
51
+ | 0.5632 | 2.0 | 2400 | 0.6236 |
52
+ | 0.3147 | 3.0 | 3600 | 0.8020 |
 
 
53
 
54
 
55
  ### Framework versions