File size: 1,103 Bytes
8f72837
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
---
tags:
- Taxi-v3
- q-learning
- reinforcement-learning
- custom-implementation
model-index:
- name: q-Taxi-v3
  results:
  - task:
      type: reinforcement-learning
      name: reinforcement-learning
    dataset:
      name: Taxi-v3
      type: Taxi-v3
    metrics:
    - type: mean_reward
      value: 7.56 +/- 2.71
      name: mean_reward
      verified: false
---

  # **Q-Learning** Agent playing1 **Taxi-v3**
  This is a trained model of a **Q-Learning** agent playing **Taxi-v3** .

  ## Usage
```python
import gymnasium as gym
from huggingface_sb3 import load_from_hub
import numpy as np
import pickle

# Load the model
env_name = "Taxi-v3"
model_name = "q-Taxi-v3"
model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl")
Qtable = pickle.load(open(model_path, "rb"))["qtable"]
env = gym.make("Taxi-v3", render_mode="human")
state, info = env.reset()

while True:
    action = np.argmax(Qtable[state][:])
    state, reward, terminated, truncated, info = env.step(action)
    env.render()
    
    if terminated or truncated:
        state, info = env.reset()
```