--- tags: - Taxi-v3 - q-learning - reinforcement-learning - custom-implementation model-index: - name: q-Taxi-v3 results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: Taxi-v3 type: Taxi-v3 metrics: - type: mean_reward value: 7.56 +/- 2.71 name: mean_reward verified: false --- # **Q-Learning** Agent playing1 **Taxi-v3** This is a trained model of a **Q-Learning** agent playing **Taxi-v3** . ## Usage ```python import gymnasium as gym from huggingface_sb3 import load_from_hub import numpy as np import pickle # Load the model env_name = "Taxi-v3" model_name = "q-Taxi-v3" model_path = load_from_hub(repo_id="ch-bz/" + model_name, filename="q-learning.pkl") Qtable = pickle.load(open(model_path, "rb"))["qtable"] env = gym.make("Taxi-v3", render_mode="human") state, info = env.reset() while True: action = np.argmax(Qtable[state][:]) state, reward, terminated, truncated, info = env.step(action) env.render() if terminated or truncated: state, info = env.reset() ```