--- library_name: transformers base_model: google/pegasus-cnn_dailymail tags: - generated_from_trainer model-index: - name: pegasus-samsum results: [] --- # pegasus-samsum This model is a fine-tuned version of [google/pegasus-cnn_dailymail](https://huggingface.co/google/pegasus-cnn_dailymail) on the SAMsum dataset. It achieves the following results on the evaluation set: - Loss: 1.3986 ## Model description The model uses PEGASUS pretrained on cnn-dailymail and it is fine-tuned on the SAMsum dataset in order to get summaries out of conversations ## Intended uses & limitations Summarization on conversations ## Training and evaluation data The training args are the following: num_train_epochs=1, warmup_steps=500, per_device_train_batch_size=1, per_gpu_eval_batch_size=1, weight_decay=0.01, logging_steps=10, push_to_hub=True, evaluation_strategy='steps', eval_steps=500, save_steps=1e6, gradient_accumulation_steps=16, remove_unused_columns=False, ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5449 | 0.5431 | 500 | 1.3986 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3