--- base_model: facebook/wav2vec2-xls-r-300m datasets: - common_voice_13_0 license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-large-xls-r-300m-tamil-commonvoice results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_13_0 type: common_voice_13_0 config: ta split: test args: ta metrics: - type: wer value: 1.0 name: Wer --- # wav2vec2-large-xls-r-300m-tamil-commonvoice This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. It achieves the following results on the evaluation set: - Loss: 7.9682 - Wer: 1.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:------:| | 6.0629 | 0.7737 | 400 | 1.5761 | 0.9986 | | 0.6711 | 1.5474 | 800 | 0.5474 | 0.7253 | | 0.437 | 2.3211 | 1200 | 0.4898 | 0.6689 | | 0.3691 | 3.0948 | 1600 | 0.4760 | 0.6562 | | 0.3942 | 3.8685 | 2000 | 0.8449 | 0.7908 | | 1.3114 | 4.6422 | 2400 | 1.8169 | 0.9883 | | 3.0292 | 5.4159 | 2800 | 3.3102 | 1.0 | | 3.3769 | 6.1896 | 3200 | 3.4855 | 1.0 | | 4.0469 | 6.9632 | 3600 | 5.2510 | 1.0 | | 6.6565 | 7.7369 | 4000 | 7.9749 | 1.0 | | 7.9329 | 8.5106 | 4400 | 7.9682 | 1.0 | | 7.925 | 9.2843 | 4800 | 7.9682 | 1.0 | | 7.9128 | 10.0580 | 5200 | 7.9682 | 1.0 | | 7.9132 | 10.8317 | 5600 | 7.9682 | 1.0 | | 7.9118 | 11.6054 | 6000 | 7.9682 | 1.0 | | 7.8873 | 12.3791 | 6400 | 7.9682 | 1.0 | | 7.9357 | 13.1528 | 6800 | 7.9682 | 1.0 | | 7.9311 | 13.9265 | 7200 | 7.9682 | 1.0 | | 7.9049 | 14.7002 | 7600 | 7.9682 | 1.0 | | 7.9234 | 15.4739 | 8000 | 7.9682 | 1.0 | | 7.9521 | 16.2476 | 8400 | 7.9682 | 1.0 | | 7.8886 | 17.0213 | 8800 | 7.9682 | 1.0 | | 7.8915 | 17.7950 | 9200 | 7.9682 | 1.0 | | 7.9265 | 18.5687 | 9600 | 7.9682 | 1.0 | | 7.9366 | 19.3424 | 10000 | 7.9682 | 1.0 | | 7.8725 | 20.1161 | 10400 | 7.9682 | 1.0 | | 7.9321 | 20.8897 | 10800 | 7.9682 | 1.0 | | 7.9282 | 21.6634 | 11200 | 7.9682 | 1.0 | | 7.9025 | 22.4371 | 11600 | 7.9682 | 1.0 | | 7.8889 | 23.2108 | 12000 | 7.9682 | 1.0 | | 7.9366 | 23.9845 | 12400 | 7.9682 | 1.0 | | 7.9205 | 24.7582 | 12800 | 7.9682 | 1.0 | | 7.8946 | 25.5319 | 13200 | 7.9682 | 1.0 | | 7.9446 | 26.3056 | 13600 | 7.9682 | 1.0 | | 7.8891 | 27.0793 | 14000 | 7.9682 | 1.0 | | 7.9088 | 27.8530 | 14400 | 7.9682 | 1.0 | | 7.9546 | 28.6267 | 14800 | 7.9682 | 1.0 | | 7.8624 | 29.4004 | 15200 | 7.9682 | 1.0 | ### Framework versions - Transformers 4.40.1 - Pytorch 1.13.1+cu117 - Datasets 2.18.0 - Tokenizers 0.19.1