first version
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- first_model.zip +3 -0
- first_model/_stable_baselines3_version +1 -0
- first_model/data +94 -0
- first_model/policy.optimizer.pth +3 -0
- first_model/policy.pth +3 -0
- first_model/pytorch_variables.pth +3 -0
- first_model/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 134.47 +/- 111.06
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd18ea63ef0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd18ea63f80>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd18ea6a050>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd18ea6a0e0>", "_build": "<function ActorCriticPolicy._build at 0x7fd18ea6a170>", "forward": "<function ActorCriticPolicy.forward at 0x7fd18ea6a200>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd18ea6a290>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd18ea6a320>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd18ea6a3b0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd18ea6a440>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd18ea6a4d0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd18ea401e0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652960224.65394, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOv23b7QsoG93WDsPfNdw7065+u8iIRzvQAAAAAAAAAAgANNPVybRrruTcm6vJ81M285SrsjjeY5AACAPwAAgD/mUNS+1K+7vLPm/Dq/iyQ4xPdGvkotZ7gAAIA/AACAP/1Li776ejm9LvEHvLznn7pqm6I+kKZXOwAAgD8AAIA/86XbPqSZkr1VwwI7lYdXud9lUz3Yjgs6AACAPwAAgD/WqN6+tZiCvd8slb08OlO8/wCXPh/6wDwAAIA/AACAP01vtr4PQm+8ZdSaunzZCbjKQwI9J2TKOQAAgD8AAIA/Gg/rvivN3j1wdPS97YyQvtroAr6Iv7G9AAAAAAAAAACGMEC+H62Pu6hiRjc2Fmg0kA+7PD4mZrYAAIA/AACAP4HEC794JPw8iJ26Ox3VTboDaZe+fs0euwAAgD8AAIA/jQvkvT2uFzrjmoe85wcWPVqlDrrmPa28AAAAAAAAAABNhG0+PUgVvYrN4TzvKeq6dP6Cvt6BrbsAAIA/AACAP2awDTwpzA66FoizuTMjGjQ1PoK76vDROAAAgD8AAIA/DWSUvsj8nbyaFn663AqpuO6yCT6d5pg5AACAPwAAgD/K1mq+KXc1O7rhoDpGLOG3nfoEvQ5kuLkAAIA/AACAP1r+Fj6VK60/fqNWPsfCur4FX2I+Jya9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXDgQkgUsCkCUhpRSlIwBbJRL64wBdJRHQJEGoIWxhUl1fZQoaAZoCWgPQwjDZoALss9cQJSGlFKUaBVN6ANoFkdAkQ7VU6xPf3V9lChoBmgJaA9DCEfn/BTH2l5AlIaUUpRoFU3oA2gWR0CREOvzvqkedX2UKGgGaAloD0MITHFV2XexUkCUhpRSlGgVTegDaBZHQJERUtwrDqJ1fZQoaAZoCWgPQwhiLT4FwAg/QJSGlFKUaBVLo2gWR0CREX6sySFHdX2UKGgGaAloD0MIjkC8rl/GZkCUhpRSlGgVTegDaBZHQJESIIJJGvx1fZQoaAZoCWgPQwhpccYwJythQJSGlFKUaBVN6ANoFkdAkRIvlMh5gXV9lChoBmgJaA9DCFH0wMfg3WNAlIaUUpRoFU3oA2gWR0CREyNKyv9tdX2UKGgGaAloD0MILv62J0gNX0CUhpRSlGgVTegDaBZHQJEXi7J4jbB1fZQoaAZoCWgPQwh4JjRJLI9BwJSGlFKUaBVLu2gWR0CRGL0iQkondX2UKGgGaAloD0MIAoI5evzKX0CUhpRSlGgVTegDaBZHQJEaXmYBvJl1fZQoaAZoCWgPQwgtXiwMkeNeQJSGlFKUaBVN6ANoFkdAkRsCTlkpZ3V9lChoBmgJaA9DCFQe3QiLfEFAlIaUUpRoFUveaBZHQJEcG78Nx2l1fZQoaAZoCWgPQwjgSQuXVZg5QJSGlFKUaBVL0mgWR0CRHDc2R7qqdX2UKGgGaAloD0MIJlex+E1lPcCUhpRSlGgVS/BoFkdAkRyggTyrgnV9lChoBmgJaA9DCGYVNgNcw1lAlIaUUpRoFU3oA2gWR0CRHW3JxNqQdX2UKGgGaAloD0MI4UGz6956QMCUhpRSlGgVS+FoFkdAkR26sU7CBXV9lChoBmgJaA9DCKXz4VmCgmBAlIaUUpRoFU3oA2gWR0CRH1FqSHM2dX2UKGgGaAloD0MIF2TL8vU5YECUhpRSlGgVTegDaBZHQJEmOPaL4vh1fZQoaAZoCWgPQwizDHGsi4s2QJSGlFKUaBVL32gWR0CRJpDv3JxOdX2UKGgGaAloD0MIWwwepv1AYUCUhpRSlGgVTegDaBZHQJFGf6O5rgx1fZQoaAZoCWgPQwj4F0FjJllVQJSGlFKUaBVN6ANoFkdAkUae32EkB3V9lChoBmgJaA9DCAEz38FP1l1AlIaUUpRoFU3oA2gWR0CRR4D+R5kcdX2UKGgGaAloD0MIRML3/gZ7X0CUhpRSlGgVTegDaBZHQJFZlj3Ehq11fZQoaAZoCWgPQwhqErwhjYxiQJSGlFKUaBVN6ANoFkdAkVpiZWq95HV9lChoBmgJaA9DCIFB0qfVEGBAlIaUUpRoFU3oA2gWR0CRYTvAGjbjdX2UKGgGaAloD0MIQMObNXinWMCUhpRSlGgVTZ4BaBZHQJFhl0T101Z1fZQoaAZoCWgPQwjovMYuUQ9KQJSGlFKUaBVN6ANoFkdAkWL0XpGFz3V9lChoBmgJaA9DCJazd0ZbQF1AlIaUUpRoFU3oA2gWR0CRZO8eS0SidX2UKGgGaAloD0MI3PP8aaN3X0CUhpRSlGgVTegDaBZHQJFltKzzErJ1fZQoaAZoCWgPQwgWGLK61QhgQJSGlFKUaBVN6ANoFkdAkWcVyNn5BXV9lChoBmgJaA9DCG3lJf+Tj1pAlIaUUpRoFU3oA2gWR0CRZzapPykLdX2UKGgGaAloD0MIyf/k794xC8CUhpRSlGgVS+FoFkdAkWf4ffXPJXV9lChoBmgJaA9DCHzWNVoOal5AlIaUUpRoFU3oA2gWR0CRaJDXvphXdX2UKGgGaAloD0MIXqEPlrFJWECUhpRSlGgVTegDaBZHQJFo1KL876p1fZQoaAZoCWgPQwjhJw6g31cSwJSGlFKUaBVLp2gWR0CRaiVLBbfQdX2UKGgGaAloD0MIhA8lWvJoSUCUhpRSlGgVTegDaBZHQJFqSADq4Yt1fZQoaAZoCWgPQwjH1F3ZBUshQJSGlFKUaBVNBwFoFkdAkXCbOzIFNnV9lChoBmgJaA9DCFg33h0ZLVlAlIaUUpRoFU3oA2gWR0CRcNKE384xdX2UKGgGaAloD0MIY7X5f9UWYkCUhpRSlGgVTegDaBZHQJFxK1IAfdR1fZQoaAZoCWgPQwhsk4rG2tMwQJSGlFKUaBVL7WgWR0CRdRR77bcodX2UKGgGaAloD0MIodtLGqOlW0CUhpRSlGgVTegDaBZHQJGRkHY6GQF1fZQoaAZoCWgPQwhtHofBfLZhQJSGlFKUaBVN6ANoFkdAkZGxVp9JBnV9lChoBmgJaA9DCBSVDWsqhFdAlIaUUpRoFU3oA2gWR0CRpIL8aXKKdX2UKGgGaAloD0MIXdxGA3gBYUCUhpRSlGgVTegDaBZHQJGr/pmmLtN1fZQoaAZoCWgPQwj12QHXFblaQJSGlFKUaBVN6ANoFkdAka2l5rxiG3V9lChoBmgJaA9DCI9VSs90WWBAlIaUUpRoFU3oA2gWR0CRsJPYWcjJdX2UKGgGaAloD0MItYtppnuhYkCUhpRSlGgVTegDaBZHQJGyBLamGdt1fZQoaAZoCWgPQwg/H2XEBWtdQJSGlFKUaBVN6ANoFkdAkbIlGb1AaHV9lChoBmgJaA9DCANAFTdufGFAlIaUUpRoFU3oA2gWR0CRsvPOIInjdX2UKGgGaAloD0MIf4Y3a/A8XUCUhpRSlGgVTegDaBZHQJGzi0iQkop1fZQoaAZoCWgPQwifWKfK9wRcQJSGlFKUaBVN6ANoFkdAkbPQ2hqTKXV9lChoBmgJaA9DCJ2f4jjwo1tAlIaUUpRoFU3oA2gWR0CRtUNVzZHvdX2UKGgGaAloD0MIQZ3y6EZeVECUhpRSlGgVTegDaBZHQJG8FWGRFJB1fZQoaAZoCWgPQwiJ7lnX6OhhQJSGlFKUaBVN6ANoFkdAkbxNX9zfanV9lChoBmgJaA9DCCrIz0aunVlAlIaUUpRoFU3oA2gWR0CRvKDOTq0MdX2UKGgGaAloD0MIB0KygAnsEsCUhpRSlGgVS/doFkdAkb6Pc32mHnV9lChoBmgJaA9DCIEKR5BKul5AlIaUUpRoFU3oA2gWR0CRwCD6WPcSdX2UKGgGaAloD0MIW5pbIaymMMCUhpRSlGgVS65oFkdAkcS3r2QGOnV9lChoBmgJaA9DCKshcY+lhVlAlIaUUpRoFU3oA2gWR0CR2hpnHvMKdX2UKGgGaAloD0MI+vIC7KMeYkCUhpRSlGgVTegDaBZHQJHaNvZRKpV1fZQoaAZoCWgPQwjx1Y7iHJVnQJSGlFKUaBVNXwJoFkdAkeEuuzQeFXV9lChoBmgJaA9DCMGPatjvlT7AlIaUUpRoFUvIaBZHQJHlCNaQmu11fZQoaAZoCWgPQwhoJEIj2LNVQJSGlFKUaBVN6ANoFkdAketiAUcn3XV9lChoBmgJaA9DCF3hXS7i+VtAlIaUUpRoFU3oA2gWR0CR8ueFcpsodX2UKGgGaAloD0MI2JsYkpMxYECUhpRSlGgVTegDaBZHQJH0lppN9IB1fZQoaAZoCWgPQwjsZ7EUycheQJSGlFKUaBVN6ANoFkdAkfdz/uLJjnV9lChoBmgJaA9DCPaZsz7lKmFAlIaUUpRoFU3oA2gWR0CR+Ofj0cwQdX2UKGgGaAloD0MIw2aACzKiY0CUhpRSlGgVTegDaBZHQJH6EkRjBmB1fZQoaAZoCWgPQwigOIB+X7FiQJSGlFKUaBVN6ANoFkdAkfsllbu+iHV9lChoBmgJaA9DCAytTs5Q2GBAlIaUUpRoFU3oA2gWR0CR/OHlOoHcdX2UKGgGaAloD0MI56p5jshoW0CUhpRSlGgVTegDaBZHQJIEPi97F851fZQoaAZoCWgPQwiX5IBdzbZiQJSGlFKUaBVN6ANoFkdAkgR3P3SKFnV9lChoBmgJaA9DCAFNhA1PPyxAlIaUUpRoFUvsaBZHQJIE1zaK1oh1fZQoaAZoCWgPQwhJRzmYTb9eQJSGlFKUaBVN6ANoFkdAkgbo9s7+1nV9lChoBmgJaA9DCOOON/ktb1fAlIaUUpRoFU2YAWgWR0CSCFxvvSc9dX2UKGgGaAloD0MI/kemQ6eQYUCUhpRSlGgVTegDaBZHQJIIkW2w3YN1fZQoaAZoCWgPQwhyh01k5jdnQJSGlFKUaBVN6ANoFkdAkg2d/OMVDnV9lChoBmgJaA9DCHqLh/cc92JAlIaUUpRoFU3oA2gWR0CSERsenyd4dX2UKGgGaAloD0MIfXpsy4CzJUCUhpRSlGgVS9doFkdAkiXfcFhXsHV9lChoBmgJaA9DCIZ2TrNACFDAlIaUUpRoFU0uAWgWR0CSKQt6HCXQdX2UKGgGaAloD0MITFEujV+gPcCUhpRSlGgVS7VoFkdAkimcWj4593V9lChoBmgJaA9DCF9FRgckqV1AlIaUUpRoFU3oA2gWR0CSKqa99MK1dX2UKGgGaAloD0MIPzVeukm3XkCUhpRSlGgVTegDaBZHQJIuPTnaFmF1fZQoaAZoCWgPQwgCKhxBKg1fQJSGlFKUaBVN6ANoFkdAkjPol+mWMXV9lChoBmgJaA9DCJDdBUoKLBRAlIaUUpRoFU0KAWgWR0CSOV5YYBNmdX2UKGgGaAloD0MIstr8v+oEMkCUhpRSlGgVS99oFkdAkjrQ6QvHtHV9lChoBmgJaA9DCDF9ryE4pWBAlIaUUpRoFU3oA2gWR0CSPHleWv8qdX2UKGgGaAloD0MIfbPNjemqXUCUhpRSlGgVTegDaBZHQJI/GQq7ROV1fZQoaAZoCWgPQwg4wMx3cFpiQJSGlFKUaBVN6ANoFkdAkkFajafzz3V9lChoBmgJaA9DCJ3y6EZY6DdAlIaUUpRoFUv+aBZHQJJCOKk2xY91fZQoaAZoCWgPQwikbmdfeexeQJSGlFKUaBVN6ANoFkdAkkJUVnEl3XV9lChoBmgJaA9DCJKx2vw/YmFAlIaUUpRoFU3oA2gWR0CSRASRKYiQdX2UKGgGaAloD0MI4e6s3XYhAkCUhpRSlGgVS9JoFkdAkkcQ1rIo3XV9lChoBmgJaA9DCIGwU6wa4F1AlIaUUpRoFU3oA2gWR0CSS4Ippeu3dX2UKGgGaAloD0MIQ61p3nFmXUCUhpRSlGgVTegDaBZHQJJLwqhDgIh1fZQoaAZoCWgPQwhF9Gvrp8VYQJSGlFKUaBVN6ANoFkdAkkwkPQOWjXV9lChoBmgJaA9DCNi3k4hwU2FAlIaUUpRoFU3oA2gWR0CST8pe/pMYdX2UKGgGaAloD0MIuRrZlZZJNUCUhpRSlGgVS+JoFkdAklJss6JZXHV9lChoBmgJaA9DCOmdCrhna2RAlIaUUpRoFU3oA2gWR0CSWIyhBZ6ldWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
first_model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1b8b3ed4cd6ce8a2494d7abdd5a67ffb1adedc9f15e21adb455a99134c4f4ce0
|
3 |
+
size 144018
|
first_model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
first_model/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd18ea63ef0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd18ea63f80>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd18ea6a050>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd18ea6a0e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd18ea6a170>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd18ea6a200>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd18ea6a290>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd18ea6a320>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd18ea6a3b0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd18ea6a440>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd18ea6a4d0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fd18ea401e0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652960224.65394,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOv23b7QsoG93WDsPfNdw7065+u8iIRzvQAAAAAAAAAAgANNPVybRrruTcm6vJ81M285SrsjjeY5AACAPwAAgD/mUNS+1K+7vLPm/Dq/iyQ4xPdGvkotZ7gAAIA/AACAP/1Li776ejm9LvEHvLznn7pqm6I+kKZXOwAAgD8AAIA/86XbPqSZkr1VwwI7lYdXud9lUz3Yjgs6AACAPwAAgD/WqN6+tZiCvd8slb08OlO8/wCXPh/6wDwAAIA/AACAP01vtr4PQm+8ZdSaunzZCbjKQwI9J2TKOQAAgD8AAIA/Gg/rvivN3j1wdPS97YyQvtroAr6Iv7G9AAAAAAAAAACGMEC+H62Pu6hiRjc2Fmg0kA+7PD4mZrYAAIA/AACAP4HEC794JPw8iJ26Ox3VTboDaZe+fs0euwAAgD8AAIA/jQvkvT2uFzrjmoe85wcWPVqlDrrmPa28AAAAAAAAAABNhG0+PUgVvYrN4TzvKeq6dP6Cvt6BrbsAAIA/AACAP2awDTwpzA66FoizuTMjGjQ1PoK76vDROAAAgD8AAIA/DWSUvsj8nbyaFn663AqpuO6yCT6d5pg5AACAPwAAgD/K1mq+KXc1O7rhoDpGLOG3nfoEvQ5kuLkAAIA/AACAP1r+Fj6VK60/fqNWPsfCur4FX2I+Jya9vQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIXDgQkgUsCkCUhpRSlIwBbJRL64wBdJRHQJEGoIWxhUl1fZQoaAZoCWgPQwjDZoALss9cQJSGlFKUaBVN6ANoFkdAkQ7VU6xPf3V9lChoBmgJaA9DCEfn/BTH2l5AlIaUUpRoFU3oA2gWR0CREOvzvqkedX2UKGgGaAloD0MITHFV2XexUkCUhpRSlGgVTegDaBZHQJERUtwrDqJ1fZQoaAZoCWgPQwhiLT4FwAg/QJSGlFKUaBVLo2gWR0CREX6sySFHdX2UKGgGaAloD0MIjkC8rl/GZkCUhpRSlGgVTegDaBZHQJESIIJJGvx1fZQoaAZoCWgPQwhpccYwJythQJSGlFKUaBVN6ANoFkdAkRIvlMh5gXV9lChoBmgJaA9DCFH0wMfg3WNAlIaUUpRoFU3oA2gWR0CREyNKyv9tdX2UKGgGaAloD0MILv62J0gNX0CUhpRSlGgVTegDaBZHQJEXi7J4jbB1fZQoaAZoCWgPQwh4JjRJLI9BwJSGlFKUaBVLu2gWR0CRGL0iQkondX2UKGgGaAloD0MIAoI5evzKX0CUhpRSlGgVTegDaBZHQJEaXmYBvJl1fZQoaAZoCWgPQwgtXiwMkeNeQJSGlFKUaBVN6ANoFkdAkRsCTlkpZ3V9lChoBmgJaA9DCFQe3QiLfEFAlIaUUpRoFUveaBZHQJEcG78Nx2l1fZQoaAZoCWgPQwjgSQuXVZg5QJSGlFKUaBVL0mgWR0CRHDc2R7qqdX2UKGgGaAloD0MIJlex+E1lPcCUhpRSlGgVS/BoFkdAkRyggTyrgnV9lChoBmgJaA9DCGYVNgNcw1lAlIaUUpRoFU3oA2gWR0CRHW3JxNqQdX2UKGgGaAloD0MI4UGz6956QMCUhpRSlGgVS+FoFkdAkR26sU7CBXV9lChoBmgJaA9DCKXz4VmCgmBAlIaUUpRoFU3oA2gWR0CRH1FqSHM2dX2UKGgGaAloD0MIF2TL8vU5YECUhpRSlGgVTegDaBZHQJEmOPaL4vh1fZQoaAZoCWgPQwizDHGsi4s2QJSGlFKUaBVL32gWR0CRJpDv3JxOdX2UKGgGaAloD0MIWwwepv1AYUCUhpRSlGgVTegDaBZHQJFGf6O5rgx1fZQoaAZoCWgPQwj4F0FjJllVQJSGlFKUaBVN6ANoFkdAkUae32EkB3V9lChoBmgJaA9DCAEz38FP1l1AlIaUUpRoFU3oA2gWR0CRR4D+R5kcdX2UKGgGaAloD0MIRML3/gZ7X0CUhpRSlGgVTegDaBZHQJFZlj3Ehq11fZQoaAZoCWgPQwhqErwhjYxiQJSGlFKUaBVN6ANoFkdAkVpiZWq95HV9lChoBmgJaA9DCIFB0qfVEGBAlIaUUpRoFU3oA2gWR0CRYTvAGjbjdX2UKGgGaAloD0MIQMObNXinWMCUhpRSlGgVTZ4BaBZHQJFhl0T101Z1fZQoaAZoCWgPQwjovMYuUQ9KQJSGlFKUaBVN6ANoFkdAkWL0XpGFz3V9lChoBmgJaA9DCJazd0ZbQF1AlIaUUpRoFU3oA2gWR0CRZO8eS0SidX2UKGgGaAloD0MI3PP8aaN3X0CUhpRSlGgVTegDaBZHQJFltKzzErJ1fZQoaAZoCWgPQwgWGLK61QhgQJSGlFKUaBVN6ANoFkdAkWcVyNn5BXV9lChoBmgJaA9DCG3lJf+Tj1pAlIaUUpRoFU3oA2gWR0CRZzapPykLdX2UKGgGaAloD0MIyf/k794xC8CUhpRSlGgVS+FoFkdAkWf4ffXPJXV9lChoBmgJaA9DCHzWNVoOal5AlIaUUpRoFU3oA2gWR0CRaJDXvphXdX2UKGgGaAloD0MIXqEPlrFJWECUhpRSlGgVTegDaBZHQJFo1KL876p1fZQoaAZoCWgPQwjhJw6g31cSwJSGlFKUaBVLp2gWR0CRaiVLBbfQdX2UKGgGaAloD0MIhA8lWvJoSUCUhpRSlGgVTegDaBZHQJFqSADq4Yt1fZQoaAZoCWgPQwjH1F3ZBUshQJSGlFKUaBVNBwFoFkdAkXCbOzIFNnV9lChoBmgJaA9DCFg33h0ZLVlAlIaUUpRoFU3oA2gWR0CRcNKE384xdX2UKGgGaAloD0MIY7X5f9UWYkCUhpRSlGgVTegDaBZHQJFxK1IAfdR1fZQoaAZoCWgPQwhsk4rG2tMwQJSGlFKUaBVL7WgWR0CRdRR77bcodX2UKGgGaAloD0MIodtLGqOlW0CUhpRSlGgVTegDaBZHQJGRkHY6GQF1fZQoaAZoCWgPQwhtHofBfLZhQJSGlFKUaBVN6ANoFkdAkZGxVp9JBnV9lChoBmgJaA9DCBSVDWsqhFdAlIaUUpRoFU3oA2gWR0CRpIL8aXKKdX2UKGgGaAloD0MIXdxGA3gBYUCUhpRSlGgVTegDaBZHQJGr/pmmLtN1fZQoaAZoCWgPQwj12QHXFblaQJSGlFKUaBVN6ANoFkdAka2l5rxiG3V9lChoBmgJaA9DCI9VSs90WWBAlIaUUpRoFU3oA2gWR0CRsJPYWcjJdX2UKGgGaAloD0MItYtppnuhYkCUhpRSlGgVTegDaBZHQJGyBLamGdt1fZQoaAZoCWgPQwg/H2XEBWtdQJSGlFKUaBVN6ANoFkdAkbIlGb1AaHV9lChoBmgJaA9DCANAFTdufGFAlIaUUpRoFU3oA2gWR0CRsvPOIInjdX2UKGgGaAloD0MIf4Y3a/A8XUCUhpRSlGgVTegDaBZHQJGzi0iQkop1fZQoaAZoCWgPQwifWKfK9wRcQJSGlFKUaBVN6ANoFkdAkbPQ2hqTKXV9lChoBmgJaA9DCJ2f4jjwo1tAlIaUUpRoFU3oA2gWR0CRtUNVzZHvdX2UKGgGaAloD0MIQZ3y6EZeVECUhpRSlGgVTegDaBZHQJG8FWGRFJB1fZQoaAZoCWgPQwiJ7lnX6OhhQJSGlFKUaBVN6ANoFkdAkbxNX9zfanV9lChoBmgJaA9DCCrIz0aunVlAlIaUUpRoFU3oA2gWR0CRvKDOTq0MdX2UKGgGaAloD0MIB0KygAnsEsCUhpRSlGgVS/doFkdAkb6Pc32mHnV9lChoBmgJaA9DCIEKR5BKul5AlIaUUpRoFU3oA2gWR0CRwCD6WPcSdX2UKGgGaAloD0MIW5pbIaymMMCUhpRSlGgVS65oFkdAkcS3r2QGOnV9lChoBmgJaA9DCKshcY+lhVlAlIaUUpRoFU3oA2gWR0CR2hpnHvMKdX2UKGgGaAloD0MI+vIC7KMeYkCUhpRSlGgVTegDaBZHQJHaNvZRKpV1fZQoaAZoCWgPQwjx1Y7iHJVnQJSGlFKUaBVNXwJoFkdAkeEuuzQeFXV9lChoBmgJaA9DCMGPatjvlT7AlIaUUpRoFUvIaBZHQJHlCNaQmu11fZQoaAZoCWgPQwhoJEIj2LNVQJSGlFKUaBVN6ANoFkdAketiAUcn3XV9lChoBmgJaA9DCF3hXS7i+VtAlIaUUpRoFU3oA2gWR0CR8ueFcpsodX2UKGgGaAloD0MI2JsYkpMxYECUhpRSlGgVTegDaBZHQJH0lppN9IB1fZQoaAZoCWgPQwjsZ7EUycheQJSGlFKUaBVN6ANoFkdAkfdz/uLJjnV9lChoBmgJaA9DCPaZsz7lKmFAlIaUUpRoFU3oA2gWR0CR+Ofj0cwQdX2UKGgGaAloD0MIw2aACzKiY0CUhpRSlGgVTegDaBZHQJH6EkRjBmB1fZQoaAZoCWgPQwigOIB+X7FiQJSGlFKUaBVN6ANoFkdAkfsllbu+iHV9lChoBmgJaA9DCAytTs5Q2GBAlIaUUpRoFU3oA2gWR0CR/OHlOoHcdX2UKGgGaAloD0MI56p5jshoW0CUhpRSlGgVTegDaBZHQJIEPi97F851fZQoaAZoCWgPQwiX5IBdzbZiQJSGlFKUaBVN6ANoFkdAkgR3P3SKFnV9lChoBmgJaA9DCAFNhA1PPyxAlIaUUpRoFUvsaBZHQJIE1zaK1oh1fZQoaAZoCWgPQwhJRzmYTb9eQJSGlFKUaBVN6ANoFkdAkgbo9s7+1nV9lChoBmgJaA9DCOOON/ktb1fAlIaUUpRoFU2YAWgWR0CSCFxvvSc9dX2UKGgGaAloD0MI/kemQ6eQYUCUhpRSlGgVTegDaBZHQJIIkW2w3YN1fZQoaAZoCWgPQwhyh01k5jdnQJSGlFKUaBVN6ANoFkdAkg2d/OMVDnV9lChoBmgJaA9DCHqLh/cc92JAlIaUUpRoFU3oA2gWR0CSERsenyd4dX2UKGgGaAloD0MIfXpsy4CzJUCUhpRSlGgVS9doFkdAkiXfcFhXsHV9lChoBmgJaA9DCIZ2TrNACFDAlIaUUpRoFU0uAWgWR0CSKQt6HCXQdX2UKGgGaAloD0MITFEujV+gPcCUhpRSlGgVS7VoFkdAkimcWj4593V9lChoBmgJaA9DCF9FRgckqV1AlIaUUpRoFU3oA2gWR0CSKqa99MK1dX2UKGgGaAloD0MIPzVeukm3XkCUhpRSlGgVTegDaBZHQJIuPTnaFmF1fZQoaAZoCWgPQwgCKhxBKg1fQJSGlFKUaBVN6ANoFkdAkjPol+mWMXV9lChoBmgJaA9DCJDdBUoKLBRAlIaUUpRoFU0KAWgWR0CSOV5YYBNmdX2UKGgGaAloD0MIstr8v+oEMkCUhpRSlGgVS99oFkdAkjrQ6QvHtHV9lChoBmgJaA9DCDF9ryE4pWBAlIaUUpRoFU3oA2gWR0CSPHleWv8qdX2UKGgGaAloD0MIfbPNjemqXUCUhpRSlGgVTegDaBZHQJI/GQq7ROV1fZQoaAZoCWgPQwg4wMx3cFpiQJSGlFKUaBVN6ANoFkdAkkFajafzz3V9lChoBmgJaA9DCJ3y6EZY6DdAlIaUUpRoFUv+aBZHQJJCOKk2xY91fZQoaAZoCWgPQwikbmdfeexeQJSGlFKUaBVN6ANoFkdAkkJUVnEl3XV9lChoBmgJaA9DCJKx2vw/YmFAlIaUUpRoFU3oA2gWR0CSRASRKYiQdX2UKGgGaAloD0MI4e6s3XYhAkCUhpRSlGgVS9JoFkdAkkcQ1rIo3XV9lChoBmgJaA9DCIGwU6wa4F1AlIaUUpRoFU3oA2gWR0CSS4Ippeu3dX2UKGgGaAloD0MIQ61p3nFmXUCUhpRSlGgVTegDaBZHQJJLwqhDgIh1fZQoaAZoCWgPQwhF9Gvrp8VYQJSGlFKUaBVN6ANoFkdAkkwkPQOWjXV9lChoBmgJaA9DCNi3k4hwU2FAlIaUUpRoFU3oA2gWR0CST8pe/pMYdX2UKGgGaAloD0MIuRrZlZZJNUCUhpRSlGgVS+JoFkdAklJss6JZXHV9lChoBmgJaA9DCOmdCrhna2RAlIaUUpRoFU3oA2gWR0CSWIyhBZ6ldWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
first_model/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:26fce9d6b0cce0fe5259a12e594a9d19f1ce06241e8af700b979055263e01fc8
|
3 |
+
size 84829
|
first_model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:06308c19b333d6e9f658a16c21902f7b21d6f5322b34069c5badbb48db52a67e
|
3 |
+
size 43201
|
first_model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
first_model/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6fcc2cba88a96384978f2f1ad54817cfd6632716a714827e1dbdc4fd411f8bf
|
3 |
+
size 249380
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 134.4708159562295, "std_reward": 111.05800756583521, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-19T11:52:56.793067"}
|