File size: 5,030 Bytes
f101731
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mimic3-mistral-7B-v0.1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>

axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
hub_model_id: chaosIsRythmic/mimic3-mistral-7B-v0.1

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  # This will be the path used for the data when it is saved to the Volume in the cloud.
  - path: data.jsonl
    ds_type: json
    type:
      # JSONL file contains question, context, answer fields per line.
      # This gets mapped to instruction, input, output axolotl tags.
      field_instruction: question
      field_input: context
      field_output: answer
      # Format is used by axolotl to generate the prompt.
      format: |-
        [INST] Using the medical notes below, assign the right ICD-9 codes.
        {input}
        {instruction} [/INST]

tokens: # add new control tokens from the dataset to the model
  - "[INST]"
  - " [/INST]"
  - "[SQL]"
  - " [/SQL]"

dataset_prepared_path: last_run_prepared
val_set_size: 0.2
output_dir: ./lora-out

sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
  - embed_tokens
  - lm_head

wandb_project:  mimic3
wandb_entity:
wandb_watch:
wandb_run_id:

loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3

gradient_accumulation_steps: 1
micro_batch_size: 6
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001

bf16: auto
fp16: false
tf32: false
train_on_inputs: false
group_by_length: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
saves_per_epoch: 1
evals_per_epoch: 4
eval_max_new_tokens: 128
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

```

</details><br>

# mimic3-mistral-7B-v0.1

This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6757

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 12
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9923        | 0.0013 | 1    | 2.1006          |
| 0.3728        | 0.2506 | 200  | 0.3790          |
| 0.3122        | 0.5013 | 400  | 0.3571          |
| 0.305         | 0.7519 | 600  | 0.3203          |
| 0.2929        | 1.0025 | 800  | 0.3158          |
| 0.2873        | 1.2531 | 1000 | 0.3000          |
| 0.2654        | 1.5038 | 1200 | 0.2971          |
| 0.3343        | 1.7544 | 1400 | 0.2846          |
| 0.2272        | 2.0050 | 1600 | 0.2901          |
| 0.1976        | 2.2556 | 1800 | 0.2900          |
| 0.2315        | 2.5063 | 2000 | 0.2829          |
| 0.1913        | 2.7569 | 2200 | 0.2852          |
| 0.2578        | 3.0075 | 2400 | 0.2809          |
| 0.1614        | 3.2581 | 2600 | 0.3104          |
| 0.1526        | 3.5088 | 2800 | 0.3171          |
| 0.1712        | 3.7594 | 3000 | 0.3042          |
| 0.1016        | 4.0100 | 3200 | 0.3367          |
| 0.0658        | 4.2607 | 3400 | 0.4388          |
| 0.0636        | 4.5113 | 3600 | 0.4601          |
| 0.0534        | 4.7619 | 3800 | 0.4398          |
| 0.0363        | 5.0125 | 4000 | 0.4785          |
| 0.0016        | 5.2632 | 4200 | 0.6498          |
| 0.0183        | 5.5138 | 4400 | 0.6769          |
| 0.0185        | 5.7644 | 4600 | 0.6757          |


### Framework versions

- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1