File size: 5,030 Bytes
f101731 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
- name: mimic3-mistral-7B-v0.1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)
<details><summary>See axolotl config</summary>
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mistral-7B-v0.1
hub_model_id: chaosIsRythmic/mimic3-mistral-7B-v0.1
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
# This will be the path used for the data when it is saved to the Volume in the cloud.
- path: data.jsonl
ds_type: json
type:
# JSONL file contains question, context, answer fields per line.
# This gets mapped to instruction, input, output axolotl tags.
field_instruction: question
field_input: context
field_output: answer
# Format is used by axolotl to generate the prompt.
format: |-
[INST] Using the medical notes below, assign the right ICD-9 codes.
{input}
{instruction} [/INST]
tokens: # add new control tokens from the dataset to the model
- "[INST]"
- " [/INST]"
- "[SQL]"
- " [/SQL]"
dataset_prepared_path: last_run_prepared
val_set_size: 0.2
output_dir: ./lora-out
sequence_len: 4096
sample_packing: false
eval_sample_packing: false
pad_to_sequence_len: false
pad_to_sequence_len: true
adapter: lora
lora_model_dir:
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_modules_to_save: # required when adding new tokens to LLaMA/Mistral
- embed_tokens
- lm_head
wandb_project: mimic3
wandb_entity:
wandb_watch:
wandb_run_id:
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
gradient_accumulation_steps: 1
micro_batch_size: 6
num_epochs: 6
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.0001
bf16: auto
fp16: false
tf32: false
train_on_inputs: false
group_by_length: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
saves_per_epoch: 1
evals_per_epoch: 4
eval_max_new_tokens: 128
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
unk_token: "<unk>"
```
</details><br>
# mimic3-mistral-7B-v0.1
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6757
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 6
- eval_batch_size: 6
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 12
- total_eval_batch_size: 12
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 6
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 1.9923 | 0.0013 | 1 | 2.1006 |
| 0.3728 | 0.2506 | 200 | 0.3790 |
| 0.3122 | 0.5013 | 400 | 0.3571 |
| 0.305 | 0.7519 | 600 | 0.3203 |
| 0.2929 | 1.0025 | 800 | 0.3158 |
| 0.2873 | 1.2531 | 1000 | 0.3000 |
| 0.2654 | 1.5038 | 1200 | 0.2971 |
| 0.3343 | 1.7544 | 1400 | 0.2846 |
| 0.2272 | 2.0050 | 1600 | 0.2901 |
| 0.1976 | 2.2556 | 1800 | 0.2900 |
| 0.2315 | 2.5063 | 2000 | 0.2829 |
| 0.1913 | 2.7569 | 2200 | 0.2852 |
| 0.2578 | 3.0075 | 2400 | 0.2809 |
| 0.1614 | 3.2581 | 2600 | 0.3104 |
| 0.1526 | 3.5088 | 2800 | 0.3171 |
| 0.1712 | 3.7594 | 3000 | 0.3042 |
| 0.1016 | 4.0100 | 3200 | 0.3367 |
| 0.0658 | 4.2607 | 3400 | 0.4388 |
| 0.0636 | 4.5113 | 3600 | 0.4601 |
| 0.0534 | 4.7619 | 3800 | 0.4398 |
| 0.0363 | 5.0125 | 4000 | 0.4785 |
| 0.0016 | 5.2632 | 4200 | 0.6498 |
| 0.0183 | 5.5138 | 4400 | 0.6769 |
| 0.0185 | 5.7644 | 4600 | 0.6757 |
### Framework versions
- PEFT 0.10.0
- Transformers 4.40.2
- Pytorch 2.2.2+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1 |