charanhu commited on
Commit
bbe0b31
1 Parent(s): b3033fc

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +75 -165
README.md CHANGED
@@ -1,199 +1,109 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
11
 
12
  ## Model Details
13
 
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
 
139
- [More Information Needed]
140
 
141
- ## Environmental Impact
142
 
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
 
144
 
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
- ## Technical Specifications [optional]
154
 
155
- ### Model Architecture and Objective
156
 
157
- [More Information Needed]
 
 
 
 
 
158
 
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
 
 
 
 
168
 
169
- [More Information Needed]
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
 
 
 
 
174
 
175
- **BibTeX:**
176
 
177
- [More Information Needed]
 
 
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
182
 
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
 
 
 
 
 
 
 
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
+ # Kannada Tokenizer
 
 
 
 
 
 
 
2
 
3
+ [![Hugging Face](https://img.shields.io/badge/HuggingFace-Model%20Card-orange)](https://huggingface.co/charanhu/kannada-tokenizer)
4
 
5
+ This is a Byte-Pair Encoding (BPE) tokenizer trained specifically for the Kannada language using the `translated_output` column from the [Cognitive-Lab/Kannada-Instruct-dataset](https://huggingface.co/datasets/Cognitive-Lab/Kannada-Instruct-dataset). It is suitable for various Natural Language Processing (NLP) tasks involving Kannada text.
6
 
7
  ## Model Details
8
 
9
+ - **Model Type:** Byte-Pair Encoding (BPE) Tokenizer
10
+ - **Language:** Kannada (`kn`)
11
+ - **Vocabulary Size:** 32,000
12
+ - **Special Tokens:**
13
+ - `[UNK]` (Unknown token)
14
+ - `[PAD]` (Padding token)
15
+ - `[CLS]` (Classifier token)
16
+ - `[SEP]` (Separator token)
17
+ - `[MASK]` (Masking token)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
+ ## Training Data
20
 
21
+ The tokenizer was trained on the `translated_output` column from the [Cognitive-Lab/Kannada-Instruct-dataset](https://huggingface.co/datasets/Cognitive-Lab/Kannada-Instruct-dataset). This dataset contains translated instructions and responses in Kannada, providing a rich corpus for effective tokenization.
22
 
23
+ - **Dataset Size:** The dataset includes a significant number of entries covering a wide range of topics and linguistic structures in Kannada.
24
+ - **Data Preprocessing:** Text normalization was applied using NFKC normalization to standardize characters.
25
 
26
+ ## Training Procedure
27
 
28
+ - **Normalization:** NFKC normalization was used to handle canonical decomposition and compatibility decomposition, ensuring that characters are represented consistently.
29
+ - **Pre-tokenization:** The text was pre-tokenized using whitespace splitting.
30
+ - **Tokenizer Algorithm:** Byte-Pair Encoding (BPE) was chosen for its effectiveness in handling subword units, which is beneficial for languages with rich morphology like Kannada.
31
+ - **Training Library:** The tokenizer was built using the [Hugging Face Tokenizers](https://github.com/huggingface/tokenizers) library.
 
32
 
33
+ ## Intended Use
34
 
35
+ This tokenizer is intended for NLP applications involving the Kannada language, such as:
36
 
37
+ - Language Modeling
38
+ - Text Classification
39
+ - Machine Translation
40
+ - Named Entity Recognition
41
+ - Question Answering
42
+ - Summarization
43
 
44
+ ## Usage
45
 
46
+ You can load the tokenizer directly from the Hugging Face Hub:
47
 
48
+ ```python
49
+ from transformers import PreTrainedTokenizerFast
50
 
51
+ tokenizer = PreTrainedTokenizerFast.from_pretrained("charanhu/kannada-tokenizer")
52
 
53
+ # Example usage
54
+ text = "ನೀವು ಹೇಗಿದ್ದೀರಿ?"
55
+ encoding = tokenizer.encode(text)
56
+ tokens = tokenizer.convert_ids_to_tokens(encoding)
57
+ decoded_text = tokenizer.decode(encoding)
58
 
59
+ print("Original Text:", text)
60
+ print("Tokens:", tokens)
61
+ print("Decoded Text:", decoded_text)
62
+ ```
63
 
64
+ **Output:**
65
 
66
+ ```
67
+ Original Text: ನೀವು ಹೇಗಿದ್ದೀರಿ?
68
+ Tokens: ['ನೀವು', 'ಹೇಗಿದ್ದೀರಿ', '?']
69
+ Decoded Text: ನೀವು ಹೇಗಿದ್ದೀರಿ?
70
+ ```
71
 
72
+ ## Limitations
73
 
74
+ - **Vocabulary Coverage:** While the tokenizer is trained on a diverse dataset, it may not include all possible words or phrases in Kannada.
75
+ - **Biases:** The tokenizer inherits any biases present in the training data. Users should be cautious when applying it to sensitive or critical applications.
76
+ - **OOV Words:** Out-of-vocabulary words may be broken into subword tokens or mapped to the `[UNK]` token.
77
 
78
+ ## Recommendations
79
 
80
+ - **Fine-tuning:** For best results in specific applications, consider fine-tuning language models with this tokenizer on domain-specific data.
81
+ - **Evaluation:** Users should evaluate the tokenizer in their specific context to ensure it meets their requirements.
82
 
83
+ ## License
84
 
85
+ [MIT License](LICENSE)
86
 
87
+ ## Acknowledgments
88
 
89
+ - **Dataset:** Thanks to [Cognitive-Lab](https://huggingface.co/Cognitive-Lab) for providing the [Kannada-Instruct-dataset](https://huggingface.co/datasets/Cognitive-Lab/Kannada-Instruct-dataset).
90
+ - **Libraries:**
91
+ - [Hugging Face Tokenizers](https://github.com/huggingface/tokenizers)
92
+ - [Hugging Face Transformers](https://github.com/huggingface/transformers)
93
 
94
+ ## Citation
95
 
96
+ If you use this tokenizer in your research or applications, please consider citing it:
97
 
98
+ ```bibtex
99
+ @misc{kannada_tokenizer_2023,
100
+ title={Kannada Tokenizer},
101
+ author={charanhu},
102
+ year={2023},
103
+ howpublished={\url{https://huggingface.co/charanhu/kannada-tokenizer}},
104
+ }
105
+ ```
106
 
107
+ ## Contact Information
108
 
109
+ For questions or comments about the tokenizer, please contact [charanhu](https://huggingface.co/charanhu).