File size: 25,362 Bytes
16f1b1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
[2023-02-26 09:32:07,567][00001] Saving configuration to /workspace/train_dir/default_experiment/config.json...
[2023-02-26 09:32:07,568][00001] Rollout worker 0 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 1 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 2 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 3 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 4 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 5 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 6 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 7 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 8 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 9 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 10 uses device cpu
[2023-02-26 09:32:07,568][00001] Rollout worker 11 uses device cpu
[2023-02-26 09:32:07,624][00001] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 09:32:07,624][00001] InferenceWorker_p0-w0: min num requests: 4
[2023-02-26 09:32:07,647][00001] Starting all processes...
[2023-02-26 09:32:07,647][00001] Starting process learner_proc0
[2023-02-26 09:32:08,374][00001] Starting all processes...
[2023-02-26 09:32:08,377][00001] Starting process inference_proc0-0
[2023-02-26 09:32:08,377][00001] Starting process rollout_proc0
[2023-02-26 09:32:08,377][00001] Starting process rollout_proc1
[2023-02-26 09:32:08,378][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 09:32:08,378][00141] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2023-02-26 09:32:08,377][00001] Starting process rollout_proc2
[2023-02-26 09:32:08,377][00001] Starting process rollout_proc3
[2023-02-26 09:32:08,377][00001] Starting process rollout_proc4
[2023-02-26 09:32:08,378][00001] Starting process rollout_proc5
[2023-02-26 09:32:08,378][00001] Starting process rollout_proc6
[2023-02-26 09:32:08,387][00141] Num visible devices: 1
[2023-02-26 09:32:08,378][00001] Starting process rollout_proc7
[2023-02-26 09:32:08,379][00001] Starting process rollout_proc8
[2023-02-26 09:32:08,380][00001] Starting process rollout_proc9
[2023-02-26 09:32:08,381][00001] Starting process rollout_proc10
[2023-02-26 09:32:08,383][00001] Starting process rollout_proc11
[2023-02-26 09:32:08,422][00141] Starting seed is not provided
[2023-02-26 09:32:08,422][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 09:32:08,422][00141] Initializing actor-critic model on device cuda:0
[2023-02-26 09:32:08,422][00141] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 09:32:08,423][00141] RunningMeanStd input shape: (1,)
[2023-02-26 09:32:08,438][00141] ConvEncoder: input_channels=3
[2023-02-26 09:32:08,565][00141] Conv encoder output size: 512
[2023-02-26 09:32:08,566][00141] Policy head output size: 512
[2023-02-26 09:32:08,579][00141] Created Actor Critic model with architecture:
[2023-02-26 09:32:08,579][00141] ActorCriticSharedWeights(
  (obs_normalizer): ObservationNormalizer(
    (running_mean_std): RunningMeanStdDictInPlace(
      (running_mean_std): ModuleDict(
        (obs): RunningMeanStdInPlace()
      )
    )
  )
  (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
  (encoder): VizdoomEncoder(
    (basic_encoder): ConvEncoder(
      (enc): RecursiveScriptModule(
        original_name=ConvEncoderImpl
        (conv_head): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Conv2d)
          (1): RecursiveScriptModule(original_name=ELU)
          (2): RecursiveScriptModule(original_name=Conv2d)
          (3): RecursiveScriptModule(original_name=ELU)
          (4): RecursiveScriptModule(original_name=Conv2d)
          (5): RecursiveScriptModule(original_name=ELU)
        )
        (mlp_layers): RecursiveScriptModule(
          original_name=Sequential
          (0): RecursiveScriptModule(original_name=Linear)
          (1): RecursiveScriptModule(original_name=ELU)
        )
      )
    )
  )
  (core): ModelCoreRNN(
    (core): GRU(512, 512)
  )
  (decoder): MlpDecoder(
    (mlp): Identity()
  )
  (critic_linear): Linear(in_features=512, out_features=1, bias=True)
  (action_parameterization): ActionParameterizationDefault(
    (distribution_linear): Linear(in_features=512, out_features=5, bias=True)
  )
)
[2023-02-26 09:32:09,423][00201] Worker 10 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,462][00197] Worker 8 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,464][00195] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,486][00190] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 09:32:09,486][00192] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,486][00190] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2023-02-26 09:32:09,488][00196] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,493][00189] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,497][00190] Num visible devices: 1
[2023-02-26 09:32:09,507][00191] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,513][00200] Worker 9 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,523][00194] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,534][00199] Worker 11 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,542][00198] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:09,561][00193] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]
[2023-02-26 09:32:10,323][00141] Using optimizer <class 'torch.optim.adam.Adam'>
[2023-02-26 09:32:10,324][00141] No checkpoints found
[2023-02-26 09:32:10,324][00141] Did not load from checkpoint, starting from scratch!
[2023-02-26 09:32:10,324][00141] Initialized policy 0 weights for model version 0
[2023-02-26 09:32:10,325][00141] LearnerWorker_p0 finished initialization!
[2023-02-26 09:32:10,325][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2023-02-26 09:32:10,383][00190] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 09:32:10,383][00190] RunningMeanStd input shape: (1,)
[2023-02-26 09:32:10,391][00190] ConvEncoder: input_channels=3
[2023-02-26 09:32:10,454][00190] Conv encoder output size: 512
[2023-02-26 09:32:10,454][00190] Policy head output size: 512
[2023-02-26 09:32:10,996][00001] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2023-02-26 09:32:11,166][00001] Inference worker 0-0 is ready!
[2023-02-26 09:32:11,166][00001] All inference workers are ready! Signal rollout workers to start!
[2023-02-26 09:32:11,194][00196] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,199][00199] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,206][00200] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,206][00197] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,214][00193] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,214][00201] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,220][00198] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,227][00191] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,233][00189] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,234][00192] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,235][00194] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,235][00195] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:11,359][00196] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,359][00199] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,401][00197] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,401][00193] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,401][00200] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,407][00191] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,407][00192] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,534][00201] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,578][00197] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,579][00193] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,582][00198] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,582][00194] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,586][00199] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,586][00191] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,586][00192] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,673][00201] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,691][00189] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,719][00194] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,768][00200] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,772][00197] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,776][00193] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,778][00196] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,778][00199] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,828][00198] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,860][00191] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,884][00194] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,943][00200] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,955][00196] Decorrelating experience for 64 frames...
[2023-02-26 09:32:11,962][00197] Decorrelating experience for 96 frames...
[2023-02-26 09:32:11,964][00195] Decorrelating experience for 0 frames...
[2023-02-26 09:32:11,968][00193] Decorrelating experience for 96 frames...
[2023-02-26 09:32:11,982][00189] Decorrelating experience for 32 frames...
[2023-02-26 09:32:11,992][00198] Decorrelating experience for 64 frames...
[2023-02-26 09:32:12,096][00199] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,107][00192] Decorrelating experience for 64 frames...
[2023-02-26 09:32:12,133][00191] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,140][00201] Decorrelating experience for 64 frames...
[2023-02-26 09:32:12,156][00198] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,157][00194] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,281][00196] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,305][00192] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,318][00195] Decorrelating experience for 32 frames...
[2023-02-26 09:32:12,321][00200] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,489][00201] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,502][00189] Decorrelating experience for 64 frames...
[2023-02-26 09:32:12,511][00195] Decorrelating experience for 64 frames...
[2023-02-26 09:32:12,629][00141] Signal inference workers to stop experience collection...
[2023-02-26 09:32:12,632][00190] InferenceWorker_p0-w0: stopping experience collection
[2023-02-26 09:32:12,696][00189] Decorrelating experience for 96 frames...
[2023-02-26 09:32:12,698][00195] Decorrelating experience for 96 frames...
[2023-02-26 09:32:13,348][00141] Signal inference workers to resume experience collection...
[2023-02-26 09:32:13,348][00190] InferenceWorker_p0-w0: resuming experience collection
[2023-02-26 09:32:14,002][00141] Stopping Batcher_0...
[2023-02-26 09:32:14,002][00001] Component Batcher_0 stopped!
[2023-02-26 09:32:14,002][00141] Saving /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth...
[2023-02-26 09:32:14,010][00198] Stopping RolloutWorker_w7...
[2023-02-26 09:32:14,010][00001] Component RolloutWorker_w7 stopped!
[2023-02-26 09:32:14,011][00198] Loop rollout_proc7_evt_loop terminating...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w1 stopped!
[2023-02-26 09:32:14,002][00141] Loop batcher_evt_loop terminating...
[2023-02-26 09:32:14,011][00189] Stopping RolloutWorker_w1...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w10 stopped!
[2023-02-26 09:32:14,011][00201] Stopping RolloutWorker_w10...
[2023-02-26 09:32:14,011][00195] Stopping RolloutWorker_w4...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w4 stopped!
[2023-02-26 09:32:14,011][00201] Loop rollout_proc10_evt_loop terminating...
[2023-02-26 09:32:14,011][00197] Stopping RolloutWorker_w8...
[2023-02-26 09:32:14,011][00189] Loop rollout_proc1_evt_loop terminating...
[2023-02-26 09:32:14,011][00195] Loop rollout_proc4_evt_loop terminating...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w8 stopped!
[2023-02-26 09:32:14,011][00199] Stopping RolloutWorker_w11...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w11 stopped!
[2023-02-26 09:32:14,011][00197] Loop rollout_proc8_evt_loop terminating...
[2023-02-26 09:32:14,011][00001] Component RolloutWorker_w2 stopped!
[2023-02-26 09:32:14,011][00191] Stopping RolloutWorker_w0...
[2023-02-26 09:32:14,011][00200] Stopping RolloutWorker_w9...
[2023-02-26 09:32:14,011][00192] Stopping RolloutWorker_w2...
[2023-02-26 09:32:14,011][00193] Stopping RolloutWorker_w3...
[2023-02-26 09:32:14,011][00199] Loop rollout_proc11_evt_loop terminating...
[2023-02-26 09:32:14,011][00196] Stopping RolloutWorker_w6...
[2023-02-26 09:32:14,012][00001] Component RolloutWorker_w9 stopped!
[2023-02-26 09:32:14,012][00191] Loop rollout_proc0_evt_loop terminating...
[2023-02-26 09:32:14,012][00001] Component RolloutWorker_w3 stopped!
[2023-02-26 09:32:14,011][00194] Stopping RolloutWorker_w5...
[2023-02-26 09:32:14,012][00200] Loop rollout_proc9_evt_loop terminating...
[2023-02-26 09:32:14,012][00193] Loop rollout_proc3_evt_loop terminating...
[2023-02-26 09:32:14,012][00001] Component RolloutWorker_w0 stopped!
[2023-02-26 09:32:14,012][00196] Loop rollout_proc6_evt_loop terminating...
[2023-02-26 09:32:14,012][00192] Loop rollout_proc2_evt_loop terminating...
[2023-02-26 09:32:14,012][00001] Component RolloutWorker_w6 stopped!
[2023-02-26 09:32:14,012][00194] Loop rollout_proc5_evt_loop terminating...
[2023-02-26 09:32:14,012][00001] Component RolloutWorker_w5 stopped!
[2023-02-26 09:32:14,018][00190] Weights refcount: 2 0
[2023-02-26 09:32:14,020][00001] Component InferenceWorker_p0-w0 stopped!
[2023-02-26 09:32:14,020][00190] Stopping InferenceWorker_p0-w0...
[2023-02-26 09:32:14,021][00190] Loop inference_proc0-0_evt_loop terminating...
[2023-02-26 09:32:14,053][00141] Saving /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth...
[2023-02-26 09:32:14,118][00141] Stopping LearnerWorker_p0...
[2023-02-26 09:32:14,118][00001] Component LearnerWorker_p0 stopped!
[2023-02-26 09:32:14,119][00141] Loop learner_proc0_evt_loop terminating...
[2023-02-26 09:32:14,119][00001] Waiting for process learner_proc0 to stop...
[2023-02-26 09:32:14,900][00001] Waiting for process inference_proc0-0 to join...
[2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc0 to join...
[2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc1 to join...
[2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc2 to join...
[2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc3 to join...
[2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc4 to join...
[2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc5 to join...
[2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc6 to join...
[2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc7 to join...
[2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc8 to join...
[2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc9 to join...
[2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc10 to join...
[2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc11 to join...
[2023-02-26 09:32:14,904][00001] Batcher 0 profile tree view:
batching: 0.0462, releasing_batches: 0.0008
[2023-02-26 09:32:14,904][00001] InferenceWorker_p0-w0 profile tree view:
wait_policy: 0.0000
  wait_policy_total: 0.8600
update_model: 0.2093
  weight_update: 0.0513
one_step: 0.0016
  handle_policy_step: 0.7327
    deserialize: 0.0239, stack: 0.0026, obs_to_device_normalize: 0.1050, forward: 0.4757, send_messages: 0.0396
    prepare_outputs: 0.0622
      to_cpu: 0.0383
[2023-02-26 09:32:14,904][00001] Learner 0 profile tree view:
misc: 0.0000, prepare_batch: 1.1570
train: 0.2483
  epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0007, kl_divergence: 0.0010, after_optimizer: 0.0080
  calculate_losses: 0.0434
    losses_init: 0.0000, forward_head: 0.0259, bptt_initial: 0.0108, tail: 0.0013, advantages_returns: 0.0005, losses: 0.0024
    bptt: 0.0021
      bptt_forward_core: 0.0020
  update: 0.1943
    clip: 0.0026
[2023-02-26 09:32:14,904][00001] RolloutWorker_w0 profile tree view:
wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0198, env_step: 0.3360, overhead: 0.0196, complete_rollouts: 0.0005
save_policy_outputs: 0.0217
  split_output_tensors: 0.0106
[2023-02-26 09:32:14,904][00001] RolloutWorker_w11 profile tree view:
wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0212, env_step: 0.3282, overhead: 0.0214, complete_rollouts: 0.0006
save_policy_outputs: 0.0236
  split_output_tensors: 0.0113
[2023-02-26 09:32:14,905][00001] Loop Runner_EvtLoop terminating...
[2023-02-26 09:32:14,905][00001] Runner profile tree view:
main_loop: 7.2583
[2023-02-26 09:32:14,905][00001] Collected {0: 16384}, FPS: 2257.3
[2023-02-26 09:32:14,921][00001] Loading existing experiment configuration from /workspace/train_dir/default_experiment/config.json
[2023-02-26 09:32:14,922][00001] Overriding arg 'num_workers' with value 1 passed from command line
[2023-02-26 09:32:14,922][00001] Adding new argument 'no_render'=True that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'save_video'=True that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'video_name'=None that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2023-02-26 09:32:14,922][00001] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Adding new argument 'hf_repository'='chavicoski/vizdoom_health_gathering_supreme' that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Adding new argument 'train_script'=None that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2023-02-26 09:32:14,923][00001] Using frameskip 1 and render_action_repeat=4 for evaluation
[2023-02-26 09:32:14,930][00001] Doom resolution: 160x120, resize resolution: (128, 72)
[2023-02-26 09:32:14,930][00001] RunningMeanStd input shape: (3, 72, 128)
[2023-02-26 09:32:14,931][00001] RunningMeanStd input shape: (1,)
[2023-02-26 09:32:14,945][00001] ConvEncoder: input_channels=3
[2023-02-26 09:32:15,033][00001] Conv encoder output size: 512
[2023-02-26 09:32:15,034][00001] Policy head output size: 512
[2023-02-26 09:32:16,298][00001] Loading state from checkpoint /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth...
[2023-02-26 09:32:16,922][00001] Num frames 100...
[2023-02-26 09:32:17,014][00001] Num frames 200...
[2023-02-26 09:32:17,108][00001] Num frames 300...
[2023-02-26 09:32:17,200][00001] Num frames 400...
[2023-02-26 09:32:17,293][00001] Num frames 500...
[2023-02-26 09:32:17,386][00001] Avg episode rewards: #0: 7.440, true rewards: #0: 5.440
[2023-02-26 09:32:17,387][00001] Avg episode reward: 7.440, avg true_objective: 5.440
[2023-02-26 09:32:17,463][00001] Num frames 600...
[2023-02-26 09:32:17,556][00001] Num frames 700...
[2023-02-26 09:32:17,649][00001] Num frames 800...
[2023-02-26 09:32:17,743][00001] Num frames 900...
[2023-02-26 09:32:17,837][00001] Num frames 1000...
[2023-02-26 09:32:17,972][00001] Avg episode rewards: #0: 7.940, true rewards: #0: 5.440
[2023-02-26 09:32:17,972][00001] Avg episode reward: 7.940, avg true_objective: 5.440
[2023-02-26 09:32:17,988][00001] Num frames 1100...
[2023-02-26 09:32:18,095][00001] Num frames 1200...
[2023-02-26 09:32:18,188][00001] Num frames 1300...
[2023-02-26 09:32:18,281][00001] Num frames 1400...
[2023-02-26 09:32:18,404][00001] Avg episode rewards: #0: 6.573, true rewards: #0: 4.907
[2023-02-26 09:32:18,404][00001] Avg episode reward: 6.573, avg true_objective: 4.907
[2023-02-26 09:32:18,442][00001] Num frames 1500...
[2023-02-26 09:32:18,543][00001] Num frames 1600...
[2023-02-26 09:32:18,635][00001] Num frames 1700...
[2023-02-26 09:32:18,728][00001] Num frames 1800...
[2023-02-26 09:32:18,832][00001] Avg episode rewards: #0: 5.890, true rewards: #0: 4.640
[2023-02-26 09:32:18,833][00001] Avg episode reward: 5.890, avg true_objective: 4.640
[2023-02-26 09:32:18,890][00001] Num frames 1900...
[2023-02-26 09:32:18,986][00001] Num frames 2000...
[2023-02-26 09:32:19,079][00001] Num frames 2100...
[2023-02-26 09:32:19,173][00001] Num frames 2200...
[2023-02-26 09:32:19,267][00001] Num frames 2300...
[2023-02-26 09:32:19,324][00001] Avg episode rewards: #0: 5.808, true rewards: #0: 4.608
[2023-02-26 09:32:19,324][00001] Avg episode reward: 5.808, avg true_objective: 4.608
[2023-02-26 09:32:19,440][00001] Num frames 2400...
[2023-02-26 09:32:19,532][00001] Num frames 2500...
[2023-02-26 09:32:19,627][00001] Num frames 2600...
[2023-02-26 09:32:19,762][00001] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480
[2023-02-26 09:32:19,762][00001] Avg episode reward: 5.480, avg true_objective: 4.480
[2023-02-26 09:32:19,773][00001] Num frames 2700...
[2023-02-26 09:32:19,866][00001] Num frames 2800...
[2023-02-26 09:32:19,958][00001] Num frames 2900...
[2023-02-26 09:32:20,051][00001] Avg episode rewards: #0: 5.063, true rewards: #0: 4.206
[2023-02-26 09:32:20,051][00001] Avg episode reward: 5.063, avg true_objective: 4.206
[2023-02-26 09:32:20,126][00001] Num frames 3000...
[2023-02-26 09:32:20,219][00001] Num frames 3100...
[2023-02-26 09:32:20,312][00001] Num frames 3200...
[2023-02-26 09:32:20,405][00001] Num frames 3300...
[2023-02-26 09:32:20,483][00001] Avg episode rewards: #0: 4.910, true rewards: #0: 4.160
[2023-02-26 09:32:20,483][00001] Avg episode reward: 4.910, avg true_objective: 4.160
[2023-02-26 09:32:20,575][00001] Num frames 3400...
[2023-02-26 09:32:20,667][00001] Num frames 3500...
[2023-02-26 09:32:20,760][00001] Num frames 3600...
[2023-02-26 09:32:20,853][00001] Num frames 3700...
[2023-02-26 09:32:20,917][00001] Avg episode rewards: #0: 4.791, true rewards: #0: 4.124
[2023-02-26 09:32:20,917][00001] Avg episode reward: 4.791, avg true_objective: 4.124
[2023-02-26 09:32:21,019][00001] Num frames 3800...
[2023-02-26 09:32:21,112][00001] Num frames 3900...
[2023-02-26 09:32:21,204][00001] Num frames 4000...
[2023-02-26 09:32:21,346][00001] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096
[2023-02-26 09:32:21,346][00001] Avg episode reward: 4.696, avg true_objective: 4.096
[2023-02-26 09:32:22,553][00001] Replay video saved to /workspace/train_dir/default_experiment/replay.mp4!