File size: 25,362 Bytes
16f1b1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 |
[2023-02-26 09:32:07,567][00001] Saving configuration to /workspace/train_dir/default_experiment/config.json... [2023-02-26 09:32:07,568][00001] Rollout worker 0 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 1 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 2 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 3 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 4 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 5 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 6 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 7 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 8 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 9 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 10 uses device cpu [2023-02-26 09:32:07,568][00001] Rollout worker 11 uses device cpu [2023-02-26 09:32:07,624][00001] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-02-26 09:32:07,624][00001] InferenceWorker_p0-w0: min num requests: 4 [2023-02-26 09:32:07,647][00001] Starting all processes... [2023-02-26 09:32:07,647][00001] Starting process learner_proc0 [2023-02-26 09:32:08,374][00001] Starting all processes... [2023-02-26 09:32:08,377][00001] Starting process inference_proc0-0 [2023-02-26 09:32:08,377][00001] Starting process rollout_proc0 [2023-02-26 09:32:08,377][00001] Starting process rollout_proc1 [2023-02-26 09:32:08,378][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-02-26 09:32:08,378][00141] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0 [2023-02-26 09:32:08,377][00001] Starting process rollout_proc2 [2023-02-26 09:32:08,377][00001] Starting process rollout_proc3 [2023-02-26 09:32:08,377][00001] Starting process rollout_proc4 [2023-02-26 09:32:08,378][00001] Starting process rollout_proc5 [2023-02-26 09:32:08,378][00001] Starting process rollout_proc6 [2023-02-26 09:32:08,387][00141] Num visible devices: 1 [2023-02-26 09:32:08,378][00001] Starting process rollout_proc7 [2023-02-26 09:32:08,379][00001] Starting process rollout_proc8 [2023-02-26 09:32:08,380][00001] Starting process rollout_proc9 [2023-02-26 09:32:08,381][00001] Starting process rollout_proc10 [2023-02-26 09:32:08,383][00001] Starting process rollout_proc11 [2023-02-26 09:32:08,422][00141] Starting seed is not provided [2023-02-26 09:32:08,422][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-02-26 09:32:08,422][00141] Initializing actor-critic model on device cuda:0 [2023-02-26 09:32:08,422][00141] RunningMeanStd input shape: (3, 72, 128) [2023-02-26 09:32:08,423][00141] RunningMeanStd input shape: (1,) [2023-02-26 09:32:08,438][00141] ConvEncoder: input_channels=3 [2023-02-26 09:32:08,565][00141] Conv encoder output size: 512 [2023-02-26 09:32:08,566][00141] Policy head output size: 512 [2023-02-26 09:32:08,579][00141] Created Actor Critic model with architecture: [2023-02-26 09:32:08,579][00141] ActorCriticSharedWeights( (obs_normalizer): ObservationNormalizer( (running_mean_std): RunningMeanStdDictInPlace( (running_mean_std): ModuleDict( (obs): RunningMeanStdInPlace() ) ) ) (returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace) (encoder): VizdoomEncoder( (basic_encoder): ConvEncoder( (enc): RecursiveScriptModule( original_name=ConvEncoderImpl (conv_head): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Conv2d) (1): RecursiveScriptModule(original_name=ELU) (2): RecursiveScriptModule(original_name=Conv2d) (3): RecursiveScriptModule(original_name=ELU) (4): RecursiveScriptModule(original_name=Conv2d) (5): RecursiveScriptModule(original_name=ELU) ) (mlp_layers): RecursiveScriptModule( original_name=Sequential (0): RecursiveScriptModule(original_name=Linear) (1): RecursiveScriptModule(original_name=ELU) ) ) ) ) (core): ModelCoreRNN( (core): GRU(512, 512) ) (decoder): MlpDecoder( (mlp): Identity() ) (critic_linear): Linear(in_features=512, out_features=1, bias=True) (action_parameterization): ActionParameterizationDefault( (distribution_linear): Linear(in_features=512, out_features=5, bias=True) ) ) [2023-02-26 09:32:09,423][00201] Worker 10 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,462][00197] Worker 8 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,464][00195] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,486][00190] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-02-26 09:32:09,486][00192] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,486][00190] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0 [2023-02-26 09:32:09,488][00196] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,493][00189] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,497][00190] Num visible devices: 1 [2023-02-26 09:32:09,507][00191] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,513][00200] Worker 9 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,523][00194] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,534][00199] Worker 11 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,542][00198] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:09,561][00193] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31] [2023-02-26 09:32:10,323][00141] Using optimizer <class 'torch.optim.adam.Adam'> [2023-02-26 09:32:10,324][00141] No checkpoints found [2023-02-26 09:32:10,324][00141] Did not load from checkpoint, starting from scratch! [2023-02-26 09:32:10,324][00141] Initialized policy 0 weights for model version 0 [2023-02-26 09:32:10,325][00141] LearnerWorker_p0 finished initialization! [2023-02-26 09:32:10,325][00141] Using GPUs [0] for process 0 (actually maps to GPUs [0]) [2023-02-26 09:32:10,383][00190] RunningMeanStd input shape: (3, 72, 128) [2023-02-26 09:32:10,383][00190] RunningMeanStd input shape: (1,) [2023-02-26 09:32:10,391][00190] ConvEncoder: input_channels=3 [2023-02-26 09:32:10,454][00190] Conv encoder output size: 512 [2023-02-26 09:32:10,454][00190] Policy head output size: 512 [2023-02-26 09:32:10,996][00001] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0) [2023-02-26 09:32:11,166][00001] Inference worker 0-0 is ready! [2023-02-26 09:32:11,166][00001] All inference workers are ready! Signal rollout workers to start! [2023-02-26 09:32:11,194][00196] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,199][00199] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,206][00200] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,206][00197] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,214][00193] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,214][00201] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,220][00198] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,227][00191] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,233][00189] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,234][00192] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,235][00194] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,235][00195] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:11,359][00196] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,359][00199] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,401][00197] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,401][00193] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,401][00200] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,407][00191] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,407][00192] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,534][00201] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,578][00197] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,579][00193] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,582][00198] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,582][00194] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,586][00199] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,586][00191] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,586][00192] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,673][00201] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,691][00189] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,719][00194] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,768][00200] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,772][00197] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,776][00193] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,778][00196] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,778][00199] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,828][00198] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,860][00191] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,884][00194] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,943][00200] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,955][00196] Decorrelating experience for 64 frames... [2023-02-26 09:32:11,962][00197] Decorrelating experience for 96 frames... [2023-02-26 09:32:11,964][00195] Decorrelating experience for 0 frames... [2023-02-26 09:32:11,968][00193] Decorrelating experience for 96 frames... [2023-02-26 09:32:11,982][00189] Decorrelating experience for 32 frames... [2023-02-26 09:32:11,992][00198] Decorrelating experience for 64 frames... [2023-02-26 09:32:12,096][00199] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,107][00192] Decorrelating experience for 64 frames... [2023-02-26 09:32:12,133][00191] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,140][00201] Decorrelating experience for 64 frames... [2023-02-26 09:32:12,156][00198] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,157][00194] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,281][00196] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,305][00192] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,318][00195] Decorrelating experience for 32 frames... [2023-02-26 09:32:12,321][00200] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,489][00201] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,502][00189] Decorrelating experience for 64 frames... [2023-02-26 09:32:12,511][00195] Decorrelating experience for 64 frames... [2023-02-26 09:32:12,629][00141] Signal inference workers to stop experience collection... [2023-02-26 09:32:12,632][00190] InferenceWorker_p0-w0: stopping experience collection [2023-02-26 09:32:12,696][00189] Decorrelating experience for 96 frames... [2023-02-26 09:32:12,698][00195] Decorrelating experience for 96 frames... [2023-02-26 09:32:13,348][00141] Signal inference workers to resume experience collection... [2023-02-26 09:32:13,348][00190] InferenceWorker_p0-w0: resuming experience collection [2023-02-26 09:32:14,002][00141] Stopping Batcher_0... [2023-02-26 09:32:14,002][00001] Component Batcher_0 stopped! [2023-02-26 09:32:14,002][00141] Saving /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth... [2023-02-26 09:32:14,010][00198] Stopping RolloutWorker_w7... [2023-02-26 09:32:14,010][00001] Component RolloutWorker_w7 stopped! [2023-02-26 09:32:14,011][00198] Loop rollout_proc7_evt_loop terminating... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w1 stopped! [2023-02-26 09:32:14,002][00141] Loop batcher_evt_loop terminating... [2023-02-26 09:32:14,011][00189] Stopping RolloutWorker_w1... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w10 stopped! [2023-02-26 09:32:14,011][00201] Stopping RolloutWorker_w10... [2023-02-26 09:32:14,011][00195] Stopping RolloutWorker_w4... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w4 stopped! [2023-02-26 09:32:14,011][00201] Loop rollout_proc10_evt_loop terminating... [2023-02-26 09:32:14,011][00197] Stopping RolloutWorker_w8... [2023-02-26 09:32:14,011][00189] Loop rollout_proc1_evt_loop terminating... [2023-02-26 09:32:14,011][00195] Loop rollout_proc4_evt_loop terminating... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w8 stopped! [2023-02-26 09:32:14,011][00199] Stopping RolloutWorker_w11... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w11 stopped! [2023-02-26 09:32:14,011][00197] Loop rollout_proc8_evt_loop terminating... [2023-02-26 09:32:14,011][00001] Component RolloutWorker_w2 stopped! [2023-02-26 09:32:14,011][00191] Stopping RolloutWorker_w0... [2023-02-26 09:32:14,011][00200] Stopping RolloutWorker_w9... [2023-02-26 09:32:14,011][00192] Stopping RolloutWorker_w2... [2023-02-26 09:32:14,011][00193] Stopping RolloutWorker_w3... [2023-02-26 09:32:14,011][00199] Loop rollout_proc11_evt_loop terminating... [2023-02-26 09:32:14,011][00196] Stopping RolloutWorker_w6... [2023-02-26 09:32:14,012][00001] Component RolloutWorker_w9 stopped! [2023-02-26 09:32:14,012][00191] Loop rollout_proc0_evt_loop terminating... [2023-02-26 09:32:14,012][00001] Component RolloutWorker_w3 stopped! [2023-02-26 09:32:14,011][00194] Stopping RolloutWorker_w5... [2023-02-26 09:32:14,012][00200] Loop rollout_proc9_evt_loop terminating... [2023-02-26 09:32:14,012][00193] Loop rollout_proc3_evt_loop terminating... [2023-02-26 09:32:14,012][00001] Component RolloutWorker_w0 stopped! [2023-02-26 09:32:14,012][00196] Loop rollout_proc6_evt_loop terminating... [2023-02-26 09:32:14,012][00192] Loop rollout_proc2_evt_loop terminating... [2023-02-26 09:32:14,012][00001] Component RolloutWorker_w6 stopped! [2023-02-26 09:32:14,012][00194] Loop rollout_proc5_evt_loop terminating... [2023-02-26 09:32:14,012][00001] Component RolloutWorker_w5 stopped! [2023-02-26 09:32:14,018][00190] Weights refcount: 2 0 [2023-02-26 09:32:14,020][00001] Component InferenceWorker_p0-w0 stopped! [2023-02-26 09:32:14,020][00190] Stopping InferenceWorker_p0-w0... [2023-02-26 09:32:14,021][00190] Loop inference_proc0-0_evt_loop terminating... [2023-02-26 09:32:14,053][00141] Saving /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth... [2023-02-26 09:32:14,118][00141] Stopping LearnerWorker_p0... [2023-02-26 09:32:14,118][00001] Component LearnerWorker_p0 stopped! [2023-02-26 09:32:14,119][00141] Loop learner_proc0_evt_loop terminating... [2023-02-26 09:32:14,119][00001] Waiting for process learner_proc0 to stop... [2023-02-26 09:32:14,900][00001] Waiting for process inference_proc0-0 to join... [2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc0 to join... [2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc1 to join... [2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc2 to join... [2023-02-26 09:32:14,901][00001] Waiting for process rollout_proc3 to join... [2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc4 to join... [2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc5 to join... [2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc6 to join... [2023-02-26 09:32:14,902][00001] Waiting for process rollout_proc7 to join... [2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc8 to join... [2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc9 to join... [2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc10 to join... [2023-02-26 09:32:14,903][00001] Waiting for process rollout_proc11 to join... [2023-02-26 09:32:14,904][00001] Batcher 0 profile tree view: batching: 0.0462, releasing_batches: 0.0008 [2023-02-26 09:32:14,904][00001] InferenceWorker_p0-w0 profile tree view: wait_policy: 0.0000 wait_policy_total: 0.8600 update_model: 0.2093 weight_update: 0.0513 one_step: 0.0016 handle_policy_step: 0.7327 deserialize: 0.0239, stack: 0.0026, obs_to_device_normalize: 0.1050, forward: 0.4757, send_messages: 0.0396 prepare_outputs: 0.0622 to_cpu: 0.0383 [2023-02-26 09:32:14,904][00001] Learner 0 profile tree view: misc: 0.0000, prepare_batch: 1.1570 train: 0.2483 epoch_init: 0.0000, minibatch_init: 0.0000, losses_postprocess: 0.0007, kl_divergence: 0.0010, after_optimizer: 0.0080 calculate_losses: 0.0434 losses_init: 0.0000, forward_head: 0.0259, bptt_initial: 0.0108, tail: 0.0013, advantages_returns: 0.0005, losses: 0.0024 bptt: 0.0021 bptt_forward_core: 0.0020 update: 0.1943 clip: 0.0026 [2023-02-26 09:32:14,904][00001] RolloutWorker_w0 profile tree view: wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0198, env_step: 0.3360, overhead: 0.0196, complete_rollouts: 0.0005 save_policy_outputs: 0.0217 split_output_tensors: 0.0106 [2023-02-26 09:32:14,904][00001] RolloutWorker_w11 profile tree view: wait_for_trajectories: 0.0006, enqueue_policy_requests: 0.0212, env_step: 0.3282, overhead: 0.0214, complete_rollouts: 0.0006 save_policy_outputs: 0.0236 split_output_tensors: 0.0113 [2023-02-26 09:32:14,905][00001] Loop Runner_EvtLoop terminating... [2023-02-26 09:32:14,905][00001] Runner profile tree view: main_loop: 7.2583 [2023-02-26 09:32:14,905][00001] Collected {0: 16384}, FPS: 2257.3 [2023-02-26 09:32:14,921][00001] Loading existing experiment configuration from /workspace/train_dir/default_experiment/config.json [2023-02-26 09:32:14,922][00001] Overriding arg 'num_workers' with value 1 passed from command line [2023-02-26 09:32:14,922][00001] Adding new argument 'no_render'=True that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'save_video'=True that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'video_name'=None that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'max_num_frames'=100000 that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'max_num_episodes'=10 that is not in the saved config file! [2023-02-26 09:32:14,922][00001] Adding new argument 'push_to_hub'=True that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Adding new argument 'hf_repository'='chavicoski/vizdoom_health_gathering_supreme' that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Adding new argument 'policy_index'=0 that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Adding new argument 'eval_deterministic'=False that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Adding new argument 'train_script'=None that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Adding new argument 'enjoy_script'=None that is not in the saved config file! [2023-02-26 09:32:14,923][00001] Using frameskip 1 and render_action_repeat=4 for evaluation [2023-02-26 09:32:14,930][00001] Doom resolution: 160x120, resize resolution: (128, 72) [2023-02-26 09:32:14,930][00001] RunningMeanStd input shape: (3, 72, 128) [2023-02-26 09:32:14,931][00001] RunningMeanStd input shape: (1,) [2023-02-26 09:32:14,945][00001] ConvEncoder: input_channels=3 [2023-02-26 09:32:15,033][00001] Conv encoder output size: 512 [2023-02-26 09:32:15,034][00001] Policy head output size: 512 [2023-02-26 09:32:16,298][00001] Loading state from checkpoint /workspace/train_dir/default_experiment/checkpoint_p0/checkpoint_000000004_16384.pth... [2023-02-26 09:32:16,922][00001] Num frames 100... [2023-02-26 09:32:17,014][00001] Num frames 200... [2023-02-26 09:32:17,108][00001] Num frames 300... [2023-02-26 09:32:17,200][00001] Num frames 400... [2023-02-26 09:32:17,293][00001] Num frames 500... [2023-02-26 09:32:17,386][00001] Avg episode rewards: #0: 7.440, true rewards: #0: 5.440 [2023-02-26 09:32:17,387][00001] Avg episode reward: 7.440, avg true_objective: 5.440 [2023-02-26 09:32:17,463][00001] Num frames 600... [2023-02-26 09:32:17,556][00001] Num frames 700... [2023-02-26 09:32:17,649][00001] Num frames 800... [2023-02-26 09:32:17,743][00001] Num frames 900... [2023-02-26 09:32:17,837][00001] Num frames 1000... [2023-02-26 09:32:17,972][00001] Avg episode rewards: #0: 7.940, true rewards: #0: 5.440 [2023-02-26 09:32:17,972][00001] Avg episode reward: 7.940, avg true_objective: 5.440 [2023-02-26 09:32:17,988][00001] Num frames 1100... [2023-02-26 09:32:18,095][00001] Num frames 1200... [2023-02-26 09:32:18,188][00001] Num frames 1300... [2023-02-26 09:32:18,281][00001] Num frames 1400... [2023-02-26 09:32:18,404][00001] Avg episode rewards: #0: 6.573, true rewards: #0: 4.907 [2023-02-26 09:32:18,404][00001] Avg episode reward: 6.573, avg true_objective: 4.907 [2023-02-26 09:32:18,442][00001] Num frames 1500... [2023-02-26 09:32:18,543][00001] Num frames 1600... [2023-02-26 09:32:18,635][00001] Num frames 1700... [2023-02-26 09:32:18,728][00001] Num frames 1800... [2023-02-26 09:32:18,832][00001] Avg episode rewards: #0: 5.890, true rewards: #0: 4.640 [2023-02-26 09:32:18,833][00001] Avg episode reward: 5.890, avg true_objective: 4.640 [2023-02-26 09:32:18,890][00001] Num frames 1900... [2023-02-26 09:32:18,986][00001] Num frames 2000... [2023-02-26 09:32:19,079][00001] Num frames 2100... [2023-02-26 09:32:19,173][00001] Num frames 2200... [2023-02-26 09:32:19,267][00001] Num frames 2300... [2023-02-26 09:32:19,324][00001] Avg episode rewards: #0: 5.808, true rewards: #0: 4.608 [2023-02-26 09:32:19,324][00001] Avg episode reward: 5.808, avg true_objective: 4.608 [2023-02-26 09:32:19,440][00001] Num frames 2400... [2023-02-26 09:32:19,532][00001] Num frames 2500... [2023-02-26 09:32:19,627][00001] Num frames 2600... [2023-02-26 09:32:19,762][00001] Avg episode rewards: #0: 5.480, true rewards: #0: 4.480 [2023-02-26 09:32:19,762][00001] Avg episode reward: 5.480, avg true_objective: 4.480 [2023-02-26 09:32:19,773][00001] Num frames 2700... [2023-02-26 09:32:19,866][00001] Num frames 2800... [2023-02-26 09:32:19,958][00001] Num frames 2900... [2023-02-26 09:32:20,051][00001] Avg episode rewards: #0: 5.063, true rewards: #0: 4.206 [2023-02-26 09:32:20,051][00001] Avg episode reward: 5.063, avg true_objective: 4.206 [2023-02-26 09:32:20,126][00001] Num frames 3000... [2023-02-26 09:32:20,219][00001] Num frames 3100... [2023-02-26 09:32:20,312][00001] Num frames 3200... [2023-02-26 09:32:20,405][00001] Num frames 3300... [2023-02-26 09:32:20,483][00001] Avg episode rewards: #0: 4.910, true rewards: #0: 4.160 [2023-02-26 09:32:20,483][00001] Avg episode reward: 4.910, avg true_objective: 4.160 [2023-02-26 09:32:20,575][00001] Num frames 3400... [2023-02-26 09:32:20,667][00001] Num frames 3500... [2023-02-26 09:32:20,760][00001] Num frames 3600... [2023-02-26 09:32:20,853][00001] Num frames 3700... [2023-02-26 09:32:20,917][00001] Avg episode rewards: #0: 4.791, true rewards: #0: 4.124 [2023-02-26 09:32:20,917][00001] Avg episode reward: 4.791, avg true_objective: 4.124 [2023-02-26 09:32:21,019][00001] Num frames 3800... [2023-02-26 09:32:21,112][00001] Num frames 3900... [2023-02-26 09:32:21,204][00001] Num frames 4000... [2023-02-26 09:32:21,346][00001] Avg episode rewards: #0: 4.696, true rewards: #0: 4.096 [2023-02-26 09:32:21,346][00001] Avg episode reward: 4.696, avg true_objective: 4.096 [2023-02-26 09:32:22,553][00001] Replay video saved to /workspace/train_dir/default_experiment/replay.mp4! |