|
{"current_steps": 10, "total_steps": 1770, "loss": 2.5989, "accuracy": 0.48124998807907104, "learning_rate": 4.999614014035063e-06, "epoch": 0.01693480101608806, "percentage": 0.56, "elapsed_time": "0:02:14", "remaining_time": "6:35:44"} |
|
{"current_steps": 20, "total_steps": 1770, "loss": 2.776, "accuracy": 0.5625, "learning_rate": 4.998440543386042e-06, "epoch": 0.03386960203217612, "percentage": 1.13, "elapsed_time": "0:04:22", "remaining_time": "6:23:03"} |
|
{"current_steps": 30, "total_steps": 1770, "loss": 2.3097, "accuracy": 0.5625, "learning_rate": 4.996479918381253e-06, "epoch": 0.05080440304826418, "percentage": 1.69, "elapsed_time": "0:06:35", "remaining_time": "6:21:50"} |
|
{"current_steps": 40, "total_steps": 1770, "loss": 2.3215, "accuracy": 0.550000011920929, "learning_rate": 4.993732756731818e-06, "epoch": 0.06773920406435224, "percentage": 2.26, "elapsed_time": "0:08:45", "remaining_time": "6:19:04"} |
|
{"current_steps": 50, "total_steps": 1770, "loss": 2.4052, "accuracy": 0.5249999761581421, "learning_rate": 4.9901999239537345e-06, "epoch": 0.0846740050804403, "percentage": 2.82, "elapsed_time": "0:10:43", "remaining_time": "6:08:58"} |
|
{"current_steps": 60, "total_steps": 1770, "loss": 2.2131, "accuracy": 0.5375000238418579, "learning_rate": 4.985882533095186e-06, "epoch": 0.10160880609652836, "percentage": 3.39, "elapsed_time": "0:12:44", "remaining_time": "6:03:16"} |
|
{"current_steps": 70, "total_steps": 1770, "loss": 2.2597, "accuracy": 0.53125, "learning_rate": 4.9807819443858705e-06, "epoch": 0.11854360711261643, "percentage": 3.95, "elapsed_time": "0:14:45", "remaining_time": "5:58:28"} |
|
{"current_steps": 80, "total_steps": 1770, "loss": 1.9368, "accuracy": 0.5, "learning_rate": 4.9748997648084404e-06, "epoch": 0.1354784081287045, "percentage": 4.52, "elapsed_time": "0:16:53", "remaining_time": "5:56:48"} |
|
{"current_steps": 90, "total_steps": 1770, "loss": 1.848, "accuracy": 0.581250011920929, "learning_rate": 4.96823784759222e-06, "epoch": 0.15241320914479256, "percentage": 5.08, "elapsed_time": "0:19:00", "remaining_time": "5:54:51"} |
|
{"current_steps": 100, "total_steps": 1770, "loss": 1.8613, "accuracy": 0.48750001192092896, "learning_rate": 4.960798291629323e-06, "epoch": 0.1693480101608806, "percentage": 5.65, "elapsed_time": "0:21:10", "remaining_time": "5:53:33"} |
|
{"current_steps": 110, "total_steps": 1770, "loss": 1.8823, "accuracy": 0.5249999761581421, "learning_rate": 4.952583440813383e-06, "epoch": 0.18628281117696868, "percentage": 6.21, "elapsed_time": "0:23:14", "remaining_time": "5:50:41"} |
|
{"current_steps": 120, "total_steps": 1770, "loss": 1.7524, "accuracy": 0.518750011920929, "learning_rate": 4.943595883301086e-06, "epoch": 0.20321761219305673, "percentage": 6.78, "elapsed_time": "0:25:25", "remaining_time": "5:49:39"} |
|
{"current_steps": 130, "total_steps": 1770, "loss": 1.5856, "accuracy": 0.543749988079071, "learning_rate": 4.933838450696757e-06, "epoch": 0.2201524132091448, "percentage": 7.34, "elapsed_time": "0:27:37", "remaining_time": "5:48:26"} |
|
{"current_steps": 140, "total_steps": 1770, "loss": 1.7352, "accuracy": 0.5062500238418579, "learning_rate": 4.923314217160234e-06, "epoch": 0.23708721422523285, "percentage": 7.91, "elapsed_time": "0:29:42", "remaining_time": "5:45:56"} |
|
{"current_steps": 150, "total_steps": 1770, "loss": 1.454, "accuracy": 0.5249999761581421, "learning_rate": 4.9120264984383285e-06, "epoch": 0.2540220152413209, "percentage": 8.47, "elapsed_time": "0:31:56", "remaining_time": "5:44:55"} |
|
{"current_steps": 160, "total_steps": 1770, "loss": 1.5938, "accuracy": 0.574999988079071, "learning_rate": 4.899978850820176e-06, "epoch": 0.270956816257409, "percentage": 9.04, "elapsed_time": "0:34:14", "remaining_time": "5:44:30"} |
|
{"current_steps": 170, "total_steps": 1770, "loss": 1.4533, "accuracy": 0.5625, "learning_rate": 4.887175070016795e-06, "epoch": 0.28789161727349705, "percentage": 9.6, "elapsed_time": "0:36:19", "remaining_time": "5:41:49"} |
|
{"current_steps": 180, "total_steps": 1770, "loss": 1.6256, "accuracy": 0.612500011920929, "learning_rate": 4.873619189965217e-06, "epoch": 0.3048264182895851, "percentage": 10.17, "elapsed_time": "0:38:32", "remaining_time": "5:40:25"} |
|
{"current_steps": 190, "total_steps": 1770, "loss": 1.4127, "accuracy": 0.5375000238418579, "learning_rate": 4.859315481557563e-06, "epoch": 0.32176121930567314, "percentage": 10.73, "elapsed_time": "0:40:40", "remaining_time": "5:38:13"} |
|
{"current_steps": 200, "total_steps": 1770, "loss": 1.4778, "accuracy": 0.5062500238418579, "learning_rate": 4.84426845129546e-06, "epoch": 0.3386960203217612, "percentage": 11.3, "elapsed_time": "0:42:50", "remaining_time": "5:36:14"} |
|
{"current_steps": 210, "total_steps": 1770, "loss": 1.5235, "accuracy": 0.53125, "learning_rate": 4.828482839870233e-06, "epoch": 0.3556308213378493, "percentage": 11.86, "elapsed_time": "0:44:52", "remaining_time": "5:33:18"} |
|
{"current_steps": 220, "total_steps": 1770, "loss": 1.5401, "accuracy": 0.512499988079071, "learning_rate": 4.811963620669314e-06, "epoch": 0.37256562235393736, "percentage": 12.43, "elapsed_time": "0:47:01", "remaining_time": "5:31:20"} |
|
{"current_steps": 230, "total_steps": 1770, "loss": 1.4399, "accuracy": 0.543749988079071, "learning_rate": 4.794715998209328e-06, "epoch": 0.3895004233700254, "percentage": 12.99, "elapsed_time": "0:49:09", "remaining_time": "5:29:07"} |
|
{"current_steps": 240, "total_steps": 1770, "loss": 1.485, "accuracy": 0.6187499761581421, "learning_rate": 4.7767454064963724e-06, "epoch": 0.40643522438611346, "percentage": 13.56, "elapsed_time": "0:51:12", "remaining_time": "5:26:26"} |
|
{"current_steps": 250, "total_steps": 1770, "loss": 1.4146, "accuracy": 0.574999988079071, "learning_rate": 4.758057507313987e-06, "epoch": 0.42337002540220153, "percentage": 14.12, "elapsed_time": "0:53:15", "remaining_time": "5:23:50"} |
|
{"current_steps": 260, "total_steps": 1770, "loss": 1.5104, "accuracy": 0.550000011920929, "learning_rate": 4.73865818843936e-06, "epoch": 0.4403048264182896, "percentage": 14.69, "elapsed_time": "0:55:28", "remaining_time": "5:22:08"} |
|
{"current_steps": 270, "total_steps": 1770, "loss": 1.4039, "accuracy": 0.5562499761581421, "learning_rate": 4.718553561788339e-06, "epoch": 0.4572396274343776, "percentage": 15.25, "elapsed_time": "0:57:34", "remaining_time": "5:19:51"} |
|
{"current_steps": 280, "total_steps": 1770, "loss": 1.5866, "accuracy": 0.4937500059604645, "learning_rate": 4.697749961489822e-06, "epoch": 0.4741744284504657, "percentage": 15.82, "elapsed_time": "0:59:43", "remaining_time": "5:17:51"} |
|
{"current_steps": 290, "total_steps": 1770, "loss": 1.381, "accuracy": 0.606249988079071, "learning_rate": 4.67625394189013e-06, "epoch": 0.4911092294665538, "percentage": 16.38, "elapsed_time": "1:01:50", "remaining_time": "5:15:36"} |
|
{"current_steps": 300, "total_steps": 1770, "loss": 1.3555, "accuracy": 0.6000000238418579, "learning_rate": 4.654072275488016e-06, "epoch": 0.5080440304826418, "percentage": 16.95, "elapsed_time": "1:03:58", "remaining_time": "5:13:29"} |
|
{"current_steps": 310, "total_steps": 1770, "loss": 1.3779, "accuracy": 0.5874999761581421, "learning_rate": 4.631211950800925e-06, "epoch": 0.5249788314987299, "percentage": 17.51, "elapsed_time": "1:06:06", "remaining_time": "5:11:19"} |
|
{"current_steps": 320, "total_steps": 1770, "loss": 1.3894, "accuracy": 0.5375000238418579, "learning_rate": 4.6076801701632095e-06, "epoch": 0.541913632514818, "percentage": 18.08, "elapsed_time": "1:08:07", "remaining_time": "5:08:41"} |
|
{"current_steps": 330, "total_steps": 1770, "loss": 1.5114, "accuracy": 0.5562499761581421, "learning_rate": 4.583484347456972e-06, "epoch": 0.558848433530906, "percentage": 18.64, "elapsed_time": "1:10:07", "remaining_time": "5:06:01"} |
|
{"current_steps": 340, "total_steps": 1770, "loss": 1.4655, "accuracy": 0.6000000238418579, "learning_rate": 4.55863210577626e-06, "epoch": 0.5757832345469941, "percentage": 19.21, "elapsed_time": "1:12:17", "remaining_time": "5:04:03"} |
|
{"current_steps": 350, "total_steps": 1770, "loss": 1.4282, "accuracy": 0.512499988079071, "learning_rate": 4.5331312750253465e-06, "epoch": 0.5927180355630821, "percentage": 19.77, "elapsed_time": "1:14:27", "remaining_time": "5:02:06"} |
|
{"current_steps": 360, "total_steps": 1770, "loss": 1.4015, "accuracy": 0.5062500238418579, "learning_rate": 4.506989889451858e-06, "epoch": 0.6096528365791702, "percentage": 20.34, "elapsed_time": "1:16:44", "remaining_time": "5:00:36"} |
|
{"current_steps": 370, "total_steps": 1770, "loss": 1.3933, "accuracy": 0.5562499761581421, "learning_rate": 4.480216185115512e-06, "epoch": 0.6265876375952583, "percentage": 20.9, "elapsed_time": "1:18:57", "remaining_time": "4:58:47"} |
|
{"current_steps": 380, "total_steps": 1770, "loss": 1.4346, "accuracy": 0.5562499761581421, "learning_rate": 4.4528185972932856e-06, "epoch": 0.6435224386113463, "percentage": 21.47, "elapsed_time": "1:21:06", "remaining_time": "4:56:39"} |
|
{"current_steps": 390, "total_steps": 1770, "loss": 1.4777, "accuracy": 0.5, "learning_rate": 4.424805757821803e-06, "epoch": 0.6604572396274344, "percentage": 22.03, "elapsed_time": "1:23:18", "remaining_time": "4:54:45"} |
|
{"current_steps": 400, "total_steps": 1770, "loss": 1.4187, "accuracy": 0.574999988079071, "learning_rate": 4.396186492377812e-06, "epoch": 0.6773920406435224, "percentage": 22.6, "elapsed_time": "1:25:32", "remaining_time": "4:52:57"} |
|
{"current_steps": 410, "total_steps": 1770, "loss": 1.397, "accuracy": 0.53125, "learning_rate": 4.366969817697578e-06, "epoch": 0.6943268416596104, "percentage": 23.16, "elapsed_time": "1:27:35", "remaining_time": "4:50:34"} |
|
{"current_steps": 420, "total_steps": 1770, "loss": 1.4589, "accuracy": 0.518750011920929, "learning_rate": 4.337164938736086e-06, "epoch": 0.7112616426756986, "percentage": 23.73, "elapsed_time": "1:29:44", "remaining_time": "4:48:28"} |
|
{"current_steps": 430, "total_steps": 1770, "loss": 1.3367, "accuracy": 0.574999988079071, "learning_rate": 4.306781245766945e-06, "epoch": 0.7281964436917866, "percentage": 24.29, "elapsed_time": "1:31:46", "remaining_time": "4:45:59"} |
|
{"current_steps": 440, "total_steps": 1770, "loss": 1.4987, "accuracy": 0.512499988079071, "learning_rate": 4.275828311423903e-06, "epoch": 0.7451312447078747, "percentage": 24.86, "elapsed_time": "1:33:46", "remaining_time": "4:43:28"} |
|
{"current_steps": 450, "total_steps": 1770, "loss": 1.3115, "accuracy": 0.625, "learning_rate": 4.244315887684912e-06, "epoch": 0.7620660457239627, "percentage": 25.42, "elapsed_time": "1:35:58", "remaining_time": "4:41:33"} |
|
{"current_steps": 460, "total_steps": 1770, "loss": 1.4203, "accuracy": 0.550000011920929, "learning_rate": 4.212253902799685e-06, "epoch": 0.7790008467400508, "percentage": 25.99, "elapsed_time": "1:38:09", "remaining_time": "4:39:32"} |
|
{"current_steps": 470, "total_steps": 1770, "loss": 1.4574, "accuracy": 0.550000011920929, "learning_rate": 4.179652458161718e-06, "epoch": 0.7959356477561389, "percentage": 26.55, "elapsed_time": "1:40:14", "remaining_time": "4:37:16"} |
|
{"current_steps": 480, "total_steps": 1770, "loss": 1.4152, "accuracy": 0.512499988079071, "learning_rate": 4.146521825125765e-06, "epoch": 0.8128704487722269, "percentage": 27.12, "elapsed_time": "1:42:29", "remaining_time": "4:35:26"} |
|
{"current_steps": 490, "total_steps": 1770, "loss": 1.3752, "accuracy": 0.581250011920929, "learning_rate": 4.11287244177176e-06, "epoch": 0.8298052497883149, "percentage": 27.68, "elapsed_time": "1:44:44", "remaining_time": "4:33:37"} |
|
{"current_steps": 500, "total_steps": 1770, "loss": 1.422, "accuracy": 0.5687500238418579, "learning_rate": 4.078714909616215e-06, "epoch": 0.8467400508044031, "percentage": 28.25, "elapsed_time": "1:46:52", "remaining_time": "4:31:27"} |
|
{"current_steps": 500, "total_steps": 1770, "eval_loss": 1.3895596265792847, "epoch": 0.8467400508044031, "percentage": 28.25, "elapsed_time": "1:50:34", "remaining_time": "4:40:52"} |
|
{"current_steps": 510, "total_steps": 1770, "loss": 1.4082, "accuracy": 0.6187499761581421, "learning_rate": 4.044059990272125e-06, "epoch": 0.8636748518204911, "percentage": 28.81, "elapsed_time": "1:52:51", "remaining_time": "4:38:49"} |
|
{"current_steps": 520, "total_steps": 1770, "loss": 1.453, "accuracy": 0.543749988079071, "learning_rate": 4.0089186020584345e-06, "epoch": 0.8806096528365792, "percentage": 29.38, "elapsed_time": "1:55:01", "remaining_time": "4:36:30"} |
|
{"current_steps": 530, "total_steps": 1770, "loss": 1.355, "accuracy": 0.612500011920929, "learning_rate": 3.973301816560124e-06, "epoch": 0.8975444538526672, "percentage": 29.94, "elapsed_time": "1:57:06", "remaining_time": "4:34:00"} |
|
{"current_steps": 540, "total_steps": 1770, "loss": 1.3383, "accuracy": 0.543749988079071, "learning_rate": 3.937220855140021e-06, "epoch": 0.9144792548687553, "percentage": 30.51, "elapsed_time": "1:59:11", "remaining_time": "4:31:28"} |
|
{"current_steps": 550, "total_steps": 1770, "loss": 1.3057, "accuracy": 0.53125, "learning_rate": 3.900687085403418e-06, "epoch": 0.9314140558848434, "percentage": 31.07, "elapsed_time": "2:01:16", "remaining_time": "4:29:00"} |
|
{"current_steps": 560, "total_steps": 1770, "loss": 1.4043, "accuracy": 0.581250011920929, "learning_rate": 3.863712017616614e-06, "epoch": 0.9483488569009314, "percentage": 31.64, "elapsed_time": "2:03:31", "remaining_time": "4:26:54"} |
|
{"current_steps": 570, "total_steps": 1770, "loss": 1.436, "accuracy": 0.512499988079071, "learning_rate": 3.826307301080504e-06, "epoch": 0.9652836579170194, "percentage": 32.2, "elapsed_time": "2:05:31", "remaining_time": "4:24:15"} |
|
{"current_steps": 580, "total_steps": 1770, "loss": 1.3661, "accuracy": 0.5062500238418579, "learning_rate": 3.7884847204603775e-06, "epoch": 0.9822184589331076, "percentage": 32.77, "elapsed_time": "2:07:50", "remaining_time": "4:22:17"} |
|
{"current_steps": 590, "total_steps": 1770, "loss": 1.5094, "accuracy": 0.5375000238418579, "learning_rate": 3.750256192073058e-06, "epoch": 0.9991532599491956, "percentage": 33.33, "elapsed_time": "2:10:08", "remaining_time": "4:20:17"} |
|
{"current_steps": 600, "total_steps": 1770, "loss": 1.285, "accuracy": 0.5687500238418579, "learning_rate": 3.7116337601325715e-06, "epoch": 1.0160880609652836, "percentage": 33.9, "elapsed_time": "2:12:19", "remaining_time": "4:18:02"} |
|
{"current_steps": 610, "total_steps": 1770, "loss": 1.3216, "accuracy": 0.5375000238418579, "learning_rate": 3.6726295929555154e-06, "epoch": 1.0330228619813717, "percentage": 34.46, "elapsed_time": "2:14:26", "remaining_time": "4:15:39"} |
|
{"current_steps": 620, "total_steps": 1770, "loss": 1.3014, "accuracy": 0.5874999761581421, "learning_rate": 3.6332559791273307e-06, "epoch": 1.0499576629974599, "percentage": 35.03, "elapsed_time": "2:16:36", "remaining_time": "4:13:23"} |
|
{"current_steps": 630, "total_steps": 1770, "loss": 1.34, "accuracy": 0.574999988079071, "learning_rate": 3.593525323630681e-06, "epoch": 1.0668924640135478, "percentage": 35.59, "elapsed_time": "2:18:49", "remaining_time": "4:11:13"} |
|
{"current_steps": 640, "total_steps": 1770, "loss": 1.282, "accuracy": 0.59375, "learning_rate": 3.5534501439371615e-06, "epoch": 1.083827265029636, "percentage": 36.16, "elapsed_time": "2:21:01", "remaining_time": "4:09:00"} |
|
{"current_steps": 650, "total_steps": 1770, "loss": 1.3556, "accuracy": 0.5687500238418579, "learning_rate": 3.5130430660635633e-06, "epoch": 1.100762066045724, "percentage": 36.72, "elapsed_time": "2:23:11", "remaining_time": "4:06:43"} |
|
{"current_steps": 660, "total_steps": 1770, "loss": 1.3296, "accuracy": 0.5375000238418579, "learning_rate": 3.4723168205939444e-06, "epoch": 1.117696867061812, "percentage": 37.29, "elapsed_time": "2:25:15", "remaining_time": "4:04:18"} |
|
{"current_steps": 670, "total_steps": 1770, "loss": 1.4141, "accuracy": 0.512499988079071, "learning_rate": 3.431284238668754e-06, "epoch": 1.1346316680779, "percentage": 37.85, "elapsed_time": "2:27:21", "remaining_time": "4:01:56"} |
|
{"current_steps": 680, "total_steps": 1770, "loss": 1.4306, "accuracy": 0.59375, "learning_rate": 3.389958247942274e-06, "epoch": 1.1515664690939882, "percentage": 38.42, "elapsed_time": "2:29:28", "remaining_time": "3:59:36"} |
|
{"current_steps": 690, "total_steps": 1770, "loss": 1.3792, "accuracy": 0.5562499761581421, "learning_rate": 3.3483518685096588e-06, "epoch": 1.168501270110076, "percentage": 38.98, "elapsed_time": "2:31:39", "remaining_time": "3:57:22"} |
|
{"current_steps": 700, "total_steps": 1770, "loss": 1.3902, "accuracy": 0.518750011920929, "learning_rate": 3.306478208804839e-06, "epoch": 1.1854360711261642, "percentage": 39.55, "elapsed_time": "2:33:39", "remaining_time": "3:54:52"} |
|
{"current_steps": 710, "total_steps": 1770, "loss": 1.2531, "accuracy": 0.6000000238418579, "learning_rate": 3.264350461470608e-06, "epoch": 1.2023708721422524, "percentage": 40.11, "elapsed_time": "2:35:38", "remaining_time": "3:52:22"} |
|
{"current_steps": 720, "total_steps": 1770, "loss": 1.2266, "accuracy": 0.643750011920929, "learning_rate": 3.2219818992021685e-06, "epoch": 1.2193056731583405, "percentage": 40.68, "elapsed_time": "2:37:52", "remaining_time": "3:50:13"} |
|
{"current_steps": 730, "total_steps": 1770, "loss": 1.2166, "accuracy": 0.5625, "learning_rate": 3.1793858705654595e-06, "epoch": 1.2362404741744284, "percentage": 41.24, "elapsed_time": "2:40:04", "remaining_time": "3:48:03"} |
|
{"current_steps": 740, "total_steps": 1770, "loss": 1.3549, "accuracy": 0.53125, "learning_rate": 3.1365757957915787e-06, "epoch": 1.2531752751905165, "percentage": 41.81, "elapsed_time": "2:42:13", "remaining_time": "3:45:47"} |
|
{"current_steps": 750, "total_steps": 1770, "loss": 1.3886, "accuracy": 0.550000011920929, "learning_rate": 3.093565162548633e-06, "epoch": 1.2701100762066047, "percentage": 42.37, "elapsed_time": "2:44:18", "remaining_time": "3:43:28"} |
|
{"current_steps": 760, "total_steps": 1770, "loss": 1.2364, "accuracy": 0.550000011920929, "learning_rate": 3.0503675216923294e-06, "epoch": 1.2870448772226926, "percentage": 42.94, "elapsed_time": "2:46:29", "remaining_time": "3:41:15"} |
|
{"current_steps": 770, "total_steps": 1770, "loss": 1.3081, "accuracy": 0.5062500238418579, "learning_rate": 3.0069964829966748e-06, "epoch": 1.3039796782387807, "percentage": 43.5, "elapsed_time": "2:48:41", "remaining_time": "3:39:05"} |
|
{"current_steps": 780, "total_steps": 1770, "loss": 1.2996, "accuracy": 0.5687500238418579, "learning_rate": 2.963465710866094e-06, "epoch": 1.3209144792548688, "percentage": 44.07, "elapsed_time": "2:50:55", "remaining_time": "3:36:57"} |
|
{"current_steps": 790, "total_steps": 1770, "loss": 1.3598, "accuracy": 0.5062500238418579, "learning_rate": 2.919788920030357e-06, "epoch": 1.337849280270957, "percentage": 44.63, "elapsed_time": "2:53:15", "remaining_time": "3:34:55"} |
|
{"current_steps": 800, "total_steps": 1770, "loss": 1.3164, "accuracy": 0.5687500238418579, "learning_rate": 2.8759798712236303e-06, "epoch": 1.3547840812870449, "percentage": 45.2, "elapsed_time": "2:55:29", "remaining_time": "3:32:47"} |
|
{"current_steps": 810, "total_steps": 1770, "loss": 1.3613, "accuracy": 0.512499988079071, "learning_rate": 2.8320523668490507e-06, "epoch": 1.371718882303133, "percentage": 45.76, "elapsed_time": "2:57:34", "remaining_time": "3:30:27"} |
|
{"current_steps": 820, "total_steps": 1770, "loss": 1.3141, "accuracy": 0.5375000238418579, "learning_rate": 2.7880202466301597e-06, "epoch": 1.388653683319221, "percentage": 46.33, "elapsed_time": "2:59:43", "remaining_time": "3:28:13"} |
|
{"current_steps": 830, "total_steps": 1770, "loss": 1.2387, "accuracy": 0.5687500238418579, "learning_rate": 2.7438973832505854e-06, "epoch": 1.405588484335309, "percentage": 46.89, "elapsed_time": "3:01:48", "remaining_time": "3:25:54"} |
|
{"current_steps": 840, "total_steps": 1770, "loss": 1.2952, "accuracy": 0.48750001192092896, "learning_rate": 2.699697677983341e-06, "epoch": 1.4225232853513972, "percentage": 47.46, "elapsed_time": "3:03:55", "remaining_time": "3:23:38"} |
|
{"current_steps": 850, "total_steps": 1770, "loss": 1.3605, "accuracy": 0.512499988079071, "learning_rate": 2.6554350563111115e-06, "epoch": 1.4394580863674853, "percentage": 48.02, "elapsed_time": "3:06:08", "remaining_time": "3:21:28"} |
|
{"current_steps": 860, "total_steps": 1770, "loss": 1.1998, "accuracy": 0.5687500238418579, "learning_rate": 2.611123463538913e-06, "epoch": 1.4563928873835732, "percentage": 48.59, "elapsed_time": "3:08:19", "remaining_time": "3:19:16"} |
|
{"current_steps": 870, "total_steps": 1770, "loss": 1.4085, "accuracy": 0.574999988079071, "learning_rate": 2.566776860400514e-06, "epoch": 1.4733276883996613, "percentage": 49.15, "elapsed_time": "3:10:28", "remaining_time": "3:17:03"} |
|
{"current_steps": 880, "total_steps": 1770, "loss": 1.3537, "accuracy": 0.48750001192092896, "learning_rate": 2.522409218659989e-06, "epoch": 1.4902624894157492, "percentage": 49.72, "elapsed_time": "3:12:40", "remaining_time": "3:14:51"} |
|
{"current_steps": 890, "total_steps": 1770, "loss": 1.3254, "accuracy": 0.574999988079071, "learning_rate": 2.4780345167097976e-06, "epoch": 1.5071972904318374, "percentage": 50.28, "elapsed_time": "3:14:54", "remaining_time": "3:12:43"} |
|
{"current_steps": 900, "total_steps": 1770, "loss": 1.358, "accuracy": 0.643750011920929, "learning_rate": 2.4336667351667747e-06, "epoch": 1.5241320914479255, "percentage": 50.85, "elapsed_time": "3:17:00", "remaining_time": "3:10:26"} |
|
{"current_steps": 910, "total_steps": 1770, "loss": 1.2975, "accuracy": 0.543749988079071, "learning_rate": 2.3893198524674264e-06, "epoch": 1.5410668924640136, "percentage": 51.41, "elapsed_time": "3:19:13", "remaining_time": "3:08:16"} |
|
{"current_steps": 920, "total_steps": 1770, "loss": 1.3585, "accuracy": 0.512499988079071, "learning_rate": 2.345007840463904e-06, "epoch": 1.5580016934801018, "percentage": 51.98, "elapsed_time": "3:21:28", "remaining_time": "3:06:09"} |
|
{"current_steps": 930, "total_steps": 1770, "loss": 1.3436, "accuracy": 0.5874999761581421, "learning_rate": 2.3007446600220572e-06, "epoch": 1.5749364944961897, "percentage": 52.54, "elapsed_time": "3:23:43", "remaining_time": "3:04:00"} |
|
{"current_steps": 940, "total_steps": 1770, "loss": 1.3592, "accuracy": 0.4937500059604645, "learning_rate": 2.2565442566229507e-06, "epoch": 1.5918712955122776, "percentage": 53.11, "elapsed_time": "3:25:53", "remaining_time": "3:01:48"} |
|
{"current_steps": 950, "total_steps": 1770, "loss": 1.3211, "accuracy": 0.6187499761581421, "learning_rate": 2.2124205559692195e-06, "epoch": 1.6088060965283657, "percentage": 53.67, "elapsed_time": "3:28:04", "remaining_time": "2:59:35"} |
|
{"current_steps": 960, "total_steps": 1770, "loss": 1.3311, "accuracy": 0.6187499761581421, "learning_rate": 2.168387459597666e-06, "epoch": 1.6257408975444538, "percentage": 54.24, "elapsed_time": "3:30:20", "remaining_time": "2:57:28"} |
|
{"current_steps": 970, "total_steps": 1770, "loss": 1.2882, "accuracy": 0.543749988079071, "learning_rate": 2.1244588404994648e-06, "epoch": 1.642675698560542, "percentage": 54.8, "elapsed_time": "3:32:27", "remaining_time": "2:55:13"} |
|
{"current_steps": 980, "total_steps": 1770, "loss": 1.3423, "accuracy": 0.518750011920929, "learning_rate": 2.08064853874936e-06, "epoch": 1.65961049957663, "percentage": 55.37, "elapsed_time": "3:34:39", "remaining_time": "2:53:02"} |
|
{"current_steps": 990, "total_steps": 1770, "loss": 1.2163, "accuracy": 0.6312500238418579, "learning_rate": 2.0369703571452387e-06, "epoch": 1.676545300592718, "percentage": 55.93, "elapsed_time": "3:36:53", "remaining_time": "2:50:53"} |
|
{"current_steps": 1000, "total_steps": 1770, "loss": 1.3103, "accuracy": 0.59375, "learning_rate": 1.993438056859441e-06, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "3:39:04", "remaining_time": "2:48:41"} |
|
{"current_steps": 1000, "total_steps": 1770, "eval_loss": 1.3313392400741577, "epoch": 1.6934801016088061, "percentage": 56.5, "elapsed_time": "3:42:46", "remaining_time": "2:51:32"} |
|
{"current_steps": 1010, "total_steps": 1770, "loss": 1.2981, "accuracy": 0.5625, "learning_rate": 1.9500653531031917e-06, "epoch": 1.710414902624894, "percentage": 57.06, "elapsed_time": "3:44:59", "remaining_time": "2:49:18"} |
|
{"current_steps": 1020, "total_steps": 1770, "loss": 1.3076, "accuracy": 0.5625, "learning_rate": 1.9068659108055117e-06, "epoch": 1.7273497036409822, "percentage": 57.63, "elapsed_time": "3:47:23", "remaining_time": "2:47:11"} |
|
{"current_steps": 1030, "total_steps": 1770, "loss": 1.1465, "accuracy": 0.606249988079071, "learning_rate": 1.863853340307962e-06, "epoch": 1.7442845046570703, "percentage": 58.19, "elapsed_time": "3:49:32", "remaining_time": "2:44:55"} |
|
{"current_steps": 1040, "total_steps": 1770, "loss": 1.3013, "accuracy": 0.612500011920929, "learning_rate": 1.8210411930766019e-06, "epoch": 1.7612193056731584, "percentage": 58.76, "elapsed_time": "3:51:44", "remaining_time": "2:42:39"} |
|
{"current_steps": 1050, "total_steps": 1770, "loss": 1.2597, "accuracy": 0.625, "learning_rate": 1.7784429574324803e-06, "epoch": 1.7781541066892466, "percentage": 59.32, "elapsed_time": "3:53:55", "remaining_time": "2:40:24"} |
|
{"current_steps": 1060, "total_steps": 1770, "loss": 1.2883, "accuracy": 0.5375000238418579, "learning_rate": 1.7360720543020327e-06, "epoch": 1.7950889077053345, "percentage": 59.89, "elapsed_time": "3:56:05", "remaining_time": "2:38:07"} |
|
{"current_steps": 1070, "total_steps": 1770, "loss": 1.3393, "accuracy": 0.574999988079071, "learning_rate": 1.6939418329887042e-06, "epoch": 1.8120237087214224, "percentage": 60.45, "elapsed_time": "3:58:16", "remaining_time": "2:35:52"} |
|
{"current_steps": 1080, "total_steps": 1770, "loss": 1.3404, "accuracy": 0.4937500059604645, "learning_rate": 1.6520655669671467e-06, "epoch": 1.8289585097375105, "percentage": 61.02, "elapsed_time": "4:00:24", "remaining_time": "2:33:35"} |
|
{"current_steps": 1090, "total_steps": 1770, "loss": 1.356, "accuracy": 0.5375000238418579, "learning_rate": 1.610456449701294e-06, "epoch": 1.8458933107535986, "percentage": 61.58, "elapsed_time": "4:02:30", "remaining_time": "2:31:17"} |
|
{"current_steps": 1100, "total_steps": 1770, "loss": 1.3787, "accuracy": 0.6187499761581421, "learning_rate": 1.5691275904876545e-06, "epoch": 1.8628281117696868, "percentage": 62.15, "elapsed_time": "4:04:34", "remaining_time": "2:28:58"} |
|
{"current_steps": 1110, "total_steps": 1770, "loss": 1.2855, "accuracy": 0.543749988079071, "learning_rate": 1.5280920103251235e-06, "epoch": 1.879762912785775, "percentage": 62.71, "elapsed_time": "4:06:41", "remaining_time": "2:26:41"} |
|
{"current_steps": 1120, "total_steps": 1770, "loss": 1.3108, "accuracy": 0.59375, "learning_rate": 1.4873626378126015e-06, "epoch": 1.8966977138018628, "percentage": 63.28, "elapsed_time": "4:08:47", "remaining_time": "2:24:23"} |
|
{"current_steps": 1130, "total_steps": 1770, "loss": 1.2889, "accuracy": 0.5687500238418579, "learning_rate": 1.446952305075738e-06, "epoch": 1.913632514817951, "percentage": 63.84, "elapsed_time": "4:10:51", "remaining_time": "2:22:04"} |
|
{"current_steps": 1140, "total_steps": 1770, "loss": 1.3124, "accuracy": 0.606249988079071, "learning_rate": 1.406873743724065e-06, "epoch": 1.9305673158340388, "percentage": 64.41, "elapsed_time": "4:13:02", "remaining_time": "2:19:50"} |
|
{"current_steps": 1150, "total_steps": 1770, "loss": 1.212, "accuracy": 0.543749988079071, "learning_rate": 1.3671395808397898e-06, "epoch": 1.947502116850127, "percentage": 64.97, "elapsed_time": "4:15:16", "remaining_time": "2:17:37"} |
|
{"current_steps": 1160, "total_steps": 1770, "loss": 1.2708, "accuracy": 0.5562499761581421, "learning_rate": 1.3277623349995418e-06, "epoch": 1.964436917866215, "percentage": 65.54, "elapsed_time": "4:17:14", "remaining_time": "2:15:16"} |
|
{"current_steps": 1170, "total_steps": 1770, "loss": 1.3554, "accuracy": 0.48750001192092896, "learning_rate": 1.2887544123302781e-06, "epoch": 1.9813717188823032, "percentage": 66.1, "elapsed_time": "4:19:15", "remaining_time": "2:12:57"} |
|
{"current_steps": 1180, "total_steps": 1770, "loss": 1.2795, "accuracy": 0.4937500059604645, "learning_rate": 1.2501281026006393e-06, "epoch": 1.9983065198983911, "percentage": 66.67, "elapsed_time": "4:21:15", "remaining_time": "2:10:37"} |
|
{"current_steps": 1190, "total_steps": 1770, "loss": 1.3511, "accuracy": 0.5687500238418579, "learning_rate": 1.2118955753489523e-06, "epoch": 2.015241320914479, "percentage": 67.23, "elapsed_time": "4:23:27", "remaining_time": "2:08:24"} |
|
{"current_steps": 1200, "total_steps": 1770, "loss": 1.3467, "accuracy": 0.5562499761581421, "learning_rate": 1.1740688760491189e-06, "epoch": 2.032176121930567, "percentage": 67.8, "elapsed_time": "4:25:35", "remaining_time": "2:06:09"} |
|
{"current_steps": 1210, "total_steps": 1770, "loss": 1.2695, "accuracy": 0.5625, "learning_rate": 1.1366599223155847e-06, "epoch": 2.0491109229466553, "percentage": 68.36, "elapsed_time": "4:27:41", "remaining_time": "2:03:53"} |
|
{"current_steps": 1220, "total_steps": 1770, "loss": 1.306, "accuracy": 0.53125, "learning_rate": 1.0996805001486067e-06, "epoch": 2.0660457239627434, "percentage": 68.93, "elapsed_time": "4:29:48", "remaining_time": "2:01:38"} |
|
{"current_steps": 1230, "total_steps": 1770, "loss": 1.3487, "accuracy": 0.574999988079071, "learning_rate": 1.0631422602209608e-06, "epoch": 2.0829805249788316, "percentage": 69.49, "elapsed_time": "4:32:01", "remaining_time": "1:59:25"} |
|
{"current_steps": 1240, "total_steps": 1770, "loss": 1.3792, "accuracy": 0.581250011920929, "learning_rate": 1.027056714207319e-06, "epoch": 2.0999153259949197, "percentage": 70.06, "elapsed_time": "4:34:20", "remaining_time": "1:57:15"} |
|
{"current_steps": 1250, "total_steps": 1770, "loss": 1.1253, "accuracy": 0.581250011920929, "learning_rate": 9.914352311573838e-07, "epoch": 2.116850127011008, "percentage": 70.62, "elapsed_time": "4:36:27", "remaining_time": "1:55:00"} |
|
{"current_steps": 1260, "total_steps": 1770, "loss": 1.2498, "accuracy": 0.550000011920929, "learning_rate": 9.562890339139877e-07, "epoch": 2.1337849280270955, "percentage": 71.19, "elapsed_time": "4:38:31", "remaining_time": "1:52:44"} |
|
{"current_steps": 1270, "total_steps": 1770, "loss": 1.2522, "accuracy": 0.59375, "learning_rate": 9.216291955772374e-07, "epoch": 2.1507197290431836, "percentage": 71.75, "elapsed_time": "4:40:32", "remaining_time": "1:50:26"} |
|
{"current_steps": 1280, "total_steps": 1770, "loss": 1.2333, "accuracy": 0.5062500238418579, "learning_rate": 8.874666360158457e-07, "epoch": 2.167654530059272, "percentage": 72.32, "elapsed_time": "4:42:45", "remaining_time": "1:48:14"} |
|
{"current_steps": 1290, "total_steps": 1770, "loss": 1.1702, "accuracy": 0.550000011920929, "learning_rate": 8.538121184267315e-07, "epoch": 2.18458933107536, "percentage": 72.88, "elapsed_time": "4:44:48", "remaining_time": "1:45:58"} |
|
{"current_steps": 1300, "total_steps": 1770, "loss": 1.2819, "accuracy": 0.574999988079071, "learning_rate": 8.206762459439907e-07, "epoch": 2.201524132091448, "percentage": 73.45, "elapsed_time": "4:46:55", "remaining_time": "1:43:44"} |
|
{"current_steps": 1310, "total_steps": 1770, "loss": 1.3177, "accuracy": 0.5687500238418579, "learning_rate": 7.880694582982898e-07, "epoch": 2.218458933107536, "percentage": 74.01, "elapsed_time": "4:49:05", "remaining_time": "1:41:30"} |
|
{"current_steps": 1320, "total_steps": 1770, "loss": 1.2905, "accuracy": 0.5062500238418579, "learning_rate": 7.560020285277401e-07, "epoch": 2.235393734123624, "percentage": 74.58, "elapsed_time": "4:51:06", "remaining_time": "1:39:14"} |
|
{"current_steps": 1330, "total_steps": 1770, "loss": 1.3196, "accuracy": 0.5249999761581421, "learning_rate": 7.244840597412956e-07, "epoch": 2.252328535139712, "percentage": 75.14, "elapsed_time": "4:53:13", "remaining_time": "1:37:00"} |
|
{"current_steps": 1340, "total_steps": 1770, "loss": 1.2872, "accuracy": 0.5562499761581421, "learning_rate": 6.935254819356796e-07, "epoch": 2.2692633361558, "percentage": 75.71, "elapsed_time": "4:55:18", "remaining_time": "1:34:45"} |
|
{"current_steps": 1350, "total_steps": 1770, "loss": 1.1808, "accuracy": 0.625, "learning_rate": 6.631360488668662e-07, "epoch": 2.2861981371718882, "percentage": 76.27, "elapsed_time": "4:57:23", "remaining_time": "1:32:31"} |
|
{"current_steps": 1360, "total_steps": 1770, "loss": 1.3274, "accuracy": 0.574999988079071, "learning_rate": 6.333253349770672e-07, "epoch": 2.3031329381879764, "percentage": 76.84, "elapsed_time": "4:59:30", "remaining_time": "1:30:17"} |
|
{"current_steps": 1370, "total_steps": 1770, "loss": 1.2175, "accuracy": 0.6187499761581421, "learning_rate": 6.041027323782364e-07, "epoch": 2.3200677392040645, "percentage": 77.4, "elapsed_time": "5:01:42", "remaining_time": "1:28:05"} |
|
{"current_steps": 1380, "total_steps": 1770, "loss": 1.2822, "accuracy": 0.5625, "learning_rate": 5.754774478929969e-07, "epoch": 2.337002540220152, "percentage": 77.97, "elapsed_time": "5:03:59", "remaining_time": "1:25:54"} |
|
{"current_steps": 1390, "total_steps": 1770, "loss": 1.2119, "accuracy": 0.5562499761581421, "learning_rate": 5.474585001539634e-07, "epoch": 2.3539373412362403, "percentage": 78.53, "elapsed_time": "5:06:06", "remaining_time": "1:23:40"} |
|
{"current_steps": 1400, "total_steps": 1770, "loss": 1.2975, "accuracy": 0.5874999761581421, "learning_rate": 5.200547167623424e-07, "epoch": 2.3708721422523285, "percentage": 79.1, "elapsed_time": "5:08:14", "remaining_time": "1:21:27"} |
|
{"current_steps": 1410, "total_steps": 1770, "loss": 1.2494, "accuracy": 0.59375, "learning_rate": 4.932747315067271e-07, "epoch": 2.3878069432684166, "percentage": 79.66, "elapsed_time": "5:10:29", "remaining_time": "1:19:16"} |
|
{"current_steps": 1420, "total_steps": 1770, "loss": 1.2374, "accuracy": 0.59375, "learning_rate": 4.6712698164294553e-07, "epoch": 2.4047417442845047, "percentage": 80.23, "elapsed_time": "5:12:42", "remaining_time": "1:17:04"} |
|
{"current_steps": 1430, "total_steps": 1770, "loss": 1.3027, "accuracy": 0.637499988079071, "learning_rate": 4.41619705235842e-07, "epoch": 2.421676545300593, "percentage": 80.79, "elapsed_time": "5:14:55", "remaining_time": "1:14:52"} |
|
{"current_steps": 1440, "total_steps": 1770, "loss": 1.3255, "accuracy": 0.581250011920929, "learning_rate": 4.167609385637961e-07, "epoch": 2.438611346316681, "percentage": 81.36, "elapsed_time": "5:17:04", "remaining_time": "1:12:39"} |
|
{"current_steps": 1450, "total_steps": 1770, "loss": 1.2391, "accuracy": 0.5249999761581421, "learning_rate": 3.9255851358683567e-07, "epoch": 2.4555461473327687, "percentage": 81.92, "elapsed_time": "5:19:17", "remaining_time": "1:10:27"} |
|
{"current_steps": 1460, "total_steps": 1770, "loss": 1.2682, "accuracy": 0.574999988079071, "learning_rate": 3.690200554791082e-07, "epoch": 2.472480948348857, "percentage": 82.49, "elapsed_time": "5:21:21", "remaining_time": "1:08:13"} |
|
{"current_steps": 1470, "total_steps": 1770, "loss": 1.2931, "accuracy": 0.5249999761581421, "learning_rate": 3.461529802265079e-07, "epoch": 2.489415749364945, "percentage": 83.05, "elapsed_time": "5:23:31", "remaining_time": "1:06:01"} |
|
{"current_steps": 1480, "total_steps": 1770, "loss": 1.3096, "accuracy": 0.581250011920929, "learning_rate": 3.2396449229020883e-07, "epoch": 2.506350550381033, "percentage": 83.62, "elapsed_time": "5:25:41", "remaining_time": "1:03:49"} |
|
{"current_steps": 1490, "total_steps": 1770, "loss": 1.2608, "accuracy": 0.574999988079071, "learning_rate": 3.024615823368371e-07, "epoch": 2.523285351397121, "percentage": 84.18, "elapsed_time": "5:27:34", "remaining_time": "1:01:33"} |
|
{"current_steps": 1500, "total_steps": 1770, "loss": 1.2057, "accuracy": 0.5625, "learning_rate": 2.8165102503600716e-07, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "5:29:42", "remaining_time": "0:59:20"} |
|
{"current_steps": 1500, "total_steps": 1770, "eval_loss": 1.3159173727035522, "epoch": 2.5402201524132093, "percentage": 84.75, "elapsed_time": "5:33:24", "remaining_time": "1:00:00"} |
|
|