--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - trl - dpo - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-SAA-600 results: [] --- # Llama-3.1-8B-Instruct-SAA-600 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_dpo_600 dataset. It achieves the following results on the evaluation set: - Loss: 0.0943 - Rewards/chosen: -0.0072 - Rewards/rejected: -0.0623 - Rewards/accuracies: 0.8833 - Rewards/margins: 0.0551 - Logps/rejected: -0.6233 - Logps/chosen: -0.0722 - Logits/rejected: -0.4048 - Logits/chosen: -0.3432 - Sft Loss: 0.0119 - Odds Ratio Loss: 0.8243 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:| | 1.3352 | 1.4815 | 50 | 1.0317 | -0.0989 | -0.1576 | 0.8333 | 0.0587 | -1.5758 | -0.9889 | -0.4812 | -0.4002 | 0.1167 | 9.1492 | | 0.2371 | 2.9630 | 100 | 0.1655 | -0.0135 | -0.0699 | 0.8833 | 0.0564 | -0.6987 | -0.1348 | -0.4551 | -0.3813 | 0.0177 | 1.4782 | | 0.1421 | 4.4444 | 150 | 0.1010 | -0.0077 | -0.0577 | 0.8833 | 0.0500 | -0.5773 | -0.0770 | -0.4107 | -0.3473 | 0.0124 | 0.8869 | | 0.1291 | 5.9259 | 200 | 0.0984 | -0.0075 | -0.0594 | 0.8833 | 0.0518 | -0.5936 | -0.0752 | -0.4066 | -0.3442 | 0.0123 | 0.8613 | | 0.1246 | 7.4074 | 250 | 0.0943 | -0.0072 | -0.0623 | 0.8833 | 0.0551 | -0.6233 | -0.0722 | -0.4048 | -0.3432 | 0.0119 | 0.8243 | | 0.1045 | 8.8889 | 300 | 0.0948 | -0.0072 | -0.0628 | 0.8833 | 0.0555 | -0.6277 | -0.0724 | -0.4046 | -0.3432 | 0.0119 | 0.8292 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0