### model model_name_or_path: meta-llama/Llama-3.1-8B-Instruct ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset: bct_non_cot_sft_100 dataset_dir: data_private template: llama3 cutoff_len: 1024 # max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/Llama-3.1-8B-Instruct/lora/sft-100 logging_steps: 10 save_steps: 50 plot_loss: true overwrite_output_dir: true save_total_limit: 3 load_best_model_at_end: true push_to_hub: true hub_model_id: chchen/Llama-3.1-8B-Instruct-SFT-100 ### train per_device_train_batch_size: 2 gradient_accumulation_steps: 8 learning_rate: 0.000005 num_train_epochs: 10.0 lr_scheduler_type: cosine warmup_ratio: 0.1 fp16: true ### eval val_size: 0.1 per_device_eval_batch_size: 2 evaluation_strategy: steps eval_steps: 50