--- base_model: meta-llama/Llama-3.1-8B-Instruct library_name: peft license: llama3.1 tags: - llama-factory - lora - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-sft-1000 results: [] --- # Llama-3.1-8B-Instruct-sft-1000 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the bct_non_cot_sft_1000 dataset. It achieves the following results on the evaluation set: - Loss: 0.0757 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.074 | 1.7778 | 50 | 0.0757 | | 0.0309 | 3.5556 | 100 | 0.0856 | | 0.012 | 5.3333 | 150 | 0.1149 | | 0.0034 | 7.1111 | 200 | 0.1489 | | 0.0024 | 8.8889 | 250 | 0.1494 | ### Framework versions - PEFT 0.12.0 - Transformers 4.45.2 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.20.0