File size: 2,122 Bytes
08be2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783129
 
 
 
 
 
08be2e5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1783129
08be2e5
 
 
 
 
 
1783129
 
 
 
 
08be2e5
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: MTSUSpring2025SoftwareEngineering
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# MTSUSpring2025SoftwareEngineering

This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4151
- Rouge1: 0.3167
- Rouge2: 0.2556
- Rougel: 0.3052
- Rougelsum: 0.3051
- Gen Len: 19.8434

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.7529        | 1.0   | 14778 | 1.5535          | 0.3091 | 0.2415 | 0.2959 | 0.2958    | 19.8355 |
| 1.6541        | 2.0   | 29556 | 1.4777          | 0.313  | 0.2491 | 0.3006 | 0.3006    | 19.8419 |
| 1.602         | 3.0   | 44334 | 1.4397          | 0.3155 | 0.2534 | 0.3036 | 0.3036    | 19.8513 |
| 1.6015        | 4.0   | 59112 | 1.4211          | 0.3164 | 0.2552 | 0.3049 | 0.3049    | 19.84   |
| 1.569         | 5.0   | 73890 | 1.4151          | 0.3167 | 0.2556 | 0.3052 | 0.3051    | 19.8434 |


### Framework versions

- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0