File size: 1,970 Bytes
3d15d5f b0034b2 3d15d5f b0034b2 3d15d5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: google-t5/t5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: TokenizerTestingMTSUFall2024SoftwareEngineering
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# TokenizerTestingMTSUFall2024SoftwareEngineering
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.5198
- Rouge1: 0.2778
- Rouge2: 0.2234
- Rougel: 0.2686
- Rougelsum: 0.2686
- Gen Len: 18.9697
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:|
| 1.8333 | 1.0 | 12429 | 1.6354 | 0.2717 | 0.2139 | 0.262 | 0.262 | 18.9751 |
| 1.7368 | 2.0 | 24858 | 1.5610 | 0.2763 | 0.2208 | 0.267 | 0.267 | 18.9735 |
| 1.6978 | 3.0 | 37287 | 1.5291 | 0.2777 | 0.2227 | 0.2683 | 0.2682 | 18.9699 |
| 1.7008 | 4.0 | 49716 | 1.5198 | 0.2778 | 0.2234 | 0.2686 | 0.2686 | 18.9697 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
|