File size: 22,094 Bytes
0c4d4e6
deb1165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c4d4e6
 
 
 
 
 
deb1165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
---
language:
- zh
- en
pipeline_tag: text-generation
base_model: yentinglin/Llama-3-Taiwan-8B-Instruct-DPO
tags:
- zhtw
license: llama3
---

## Description

This repo contains GGUF format model files for [yentinglin/Llama-3-Taiwan-8B-Instruct-DPO](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-DPO).


## Provided files
| Name | Quant method | Bits | Size | Use case |
| ---- | ---- | ---- | ---- | ---- |
| [llama-3-taiwan-8b-instruct-dpo-q5_0.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q5_0.gguf) | Q5_0 | 5 | 5.6 GB| legacy; medium, balanced quality |
| [llama-3-taiwan-8b-instruct-dpo-q5_1.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q5_1.gguf) | Q5_1 | 5 | 6.07 GB| large, low quality loss  |
| [llama-3-taiwan-8b-instruct-dpo-q5_k_s.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q5_k_s.gguf) | Q5_K_S | 5 | 5.6 GB| large, very low quality loss |
| [llama-3-taiwan-8b-instruct-dpo-q5_k_m.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q5_k_m.gguf) | Q5_K_M | 5 | 5.73 GB| large, very low quality loss |
| [llama-3-taiwan-8b-instruct-dpo-q6_k.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q6_k.gguf) | Q6_K | 6 | 6.6 GB| very large, extremely low quality loss |
| [llama-3-taiwan-8b-instruct-dpo-q8_0.gguf](https://huggingface.co/chienweichang/Llama-3-Taiwan-8B-Instruct-DPO-GGUF/blob/main/llama-3-taiwan-8b-instruct-dpo-q8_0.gguf) | Q8_0 | 8 | 8.54 GB| very large, extremely low quality loss |

## Original model card

<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/vlfv5sHbt4hBxb3YwULlU.png" alt="Taiwan LLM Logo" width="600" style="margin-left:'auto' margin-right:'auto' display:'block'"/>

# 🚀 [Demo Site](https://twllm.com/)

Try out Llama-3-Taiwan interactively at [twllm.com](https://twllm.com/)

# ⚔️ [Chatbot Arena](https://arena.twllm.com/)

Participate in the exciting [Chatbot Arena](https://arena.twllm.com/) and compete against other chatbots!

🚀 We're excited to introduce Llama-3-Taiwan-70B! Llama-3-Taiwan-70B is a 70B parameter model finetuned on a large corpus of Traditional Mandarin and English data using the Llama-3 architecture. It demonstrates state-of-the-art performance on various Traditional Mandarin NLP benchmarks.

The model was trained with [NVIDIA NeMo™ Framework](https://www.nvidia.com/en-us/ai-data-science/generative-ai/nemo-framework/) using the NVIDIA Taipei-1 built with [NVIDIA DGX H100](https://www.nvidia.com/en-us/data-center/dgx-h100/) systems.

The compute and data for training Llama-3-Taiwan-70B was generously sponsored by [Chang Gung Memorial Hospital](https://www.cgmh.org.tw/eng), [Chang Chun Group](https://www.ccp.com.tw/ccpweb.nsf/homepage?openagent), [Legalsign.ai](https://legalsign.ai/), [NVIDIA](https://www.nvidia.com/zh-tw/), [Pegatron](https://www.pegatroncorp.com/), [TechOrange](https://buzzorange.com/techorange/), and [Unimicron](https://www.unimicron.com/) (in alphabetical order).

We would like to acknowledge the [contributions](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc1#contributions) of our data provider, team members and advisors in the development of this model, including [shasha77](https://www.youtube.com/@shasha77) for high-quality YouTube scripts and study materials, [Taiwan AI Labs](https://ailabs.tw/) for providing local media content, [Ubitus K.K.](https://ubitus.net/zh/) for offering gaming content, Professor Yun-Nung (Vivian) Chen for her guidance and advisement, Wei-Lin Chen for leading our pretraining data pipeline, Tzu-Han Lin for synthetic data generation, Chang-Sheng Kao for enhancing our synthetic data quality, and Kang-Chieh Chen for cleaning instruction-following data.


# Model Summary

Llama-3-Taiwan-70B is a large language model finetuned for Traditional Mandarin and English users. It has strong capabilities in language understanding, generation, reasoning, and multi-turn dialogue. Key features include:

- 70B parameters
- Languages: Traditional Mandarin (zh-tw), English (en)
- Finetuned on High-quality Traditional Mandarin and English corpus covering general knowledge as well as industrial knowledge in legal, manufacturing, medical, and electronics domains
- 8K context length
- Open model released under the Llama-3 license

# Training Details

- Training Framework: [NVIDIA NeMo](https://www.nvidia.com/zh-tw/ai-data-science/products/nemo/), [NVIDIA NeMo Megatron](https://docs.nvidia.com/nemo-framework/user-guide/latest/nemotoolkit/nlp/megatron.html)
- Inference Framework: [NVIDIA TensorRT-LLM](https://github.com/NVIDIA/TensorRT-LLM)
- Base model: [Llama-3 70B](https://llama.meta.com/llama3/)
- Hardware: [NVIDIA DGX H100](https://www.nvidia.com/zh-tw/data-center/dgx-h100/) on Taipei-1
- Context length: 8K tokens ([128k version](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-128k))
- Batch size: 2M tokens per step

# Evaluation

Checkout [Open TW LLM Leaderboard](https://huggingface.co/spaces/yentinglin/open-tw-llm-leaderboard) for full and updated list.

| Model                                                                            | [TMLU](https://arxiv.org/pdf/2403.20180) | Taiwan Truthful QA | [Legal Eval](https://huggingface.co/datasets/lianghsun/tw-legal-benchmark-v1) |  [TW MT-Bench](https://huggingface.co/datasets/MediaTek-Research/TCEval-v2) | Long context | Function Calling | [TMMLU+](https://github.com/iKala/ievals) | 
|---------------------------------------------------------------------------------|--------------|---------------|--------------------|--------------|--------------|-----------------|-----------| 
|      | 學科知識 | 台灣在地化測試 | 台灣法律考題 |  中文多輪對答 | 長文本支援 | 函數呼叫 |  | 
| [**yentinglin/Llama-3-Taiwan-70B-Instruct**](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct)     | **74.76%**       |     80.95%          |      68.42%              |      7.54        |    [128k version](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-128k)          |        ✅         |     67.53%      |
| [**yentinglin/Llama-3-Taiwan-70B-Instruct-DPO**](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-DPO)     | 74.60%       |     **81.75%**          |      **70.33%**              |      -       |    -   |        ✅         | - |
| [**yentinglin/Llama-3-Taiwan-70B-Instruct-128k**](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct)     | 73.01%       |     80.16%          |      63.64%              |   -    |   -  |        ✅         |  -  |
| [**yentinglin/Llama-3-Taiwan-8B-Instruct**](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct) | 59.50%       |    61.11%           |         53.11%           |     7.21         |     [128k version](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-128k)         |        ✅         |    52.28%       |
| [**yentinglin/Llama-3-Taiwan-8B-Instruct-DPO**](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-DPO) | 59.88%       |    59.52%           |         52.63%           |  -  |  -  |        ✅         |  -   |
| [**yentinglin/Llama-3-Taiwan-8B-Instruct-128k**](https://huggingface.co/yentinglin/Llama-3-Taiwan-8B-Instruct-128k) | -  |  -   |    -     | - | -  |        ✅         |  -  |
| [Claude-3-Opus](https://www.anthropic.com/api) | [73.59% (5-shot)](https://arxiv.org/pdf/2403.20180)       |  [69.84%](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc3/tree/main/opus-Taiwan-Truthful-QA)    |     [60.29%](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc3/tree/main/opus)      |       -       |      200k       |        ✅         |     -      |
| [GPT4-o](https://platform.openai.com/docs/api-reference/chat/create) | [65.56% (0-shot), 69.88% (5-shot)](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc3/tree/main/4o-tmlu) | [76.98%](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc3/tree/main/4o-Taiwan-Truthful-QA)  |    [53.59%](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc3/tree/main/4o)   | -  |      128k        |        ✅         |    -  |
| [GPT4-turbo](https://platform.openai.com/docs/api-reference/chat/create) | [70.42% (5-shot)](https://arxiv.org/pdf/2403.20180)       |        -       |              -      |          -   |      128k        |        ✅         |     60.34%^      |
| [Gemini-Pro](https://ai.google.dev/gemini-api/docs) | [61.40% (5-shot)](https://arxiv.org/pdf/2403.20180)       |          -     |            -        |     -         |       1000k       |        ✅         |    49.92%^     |
| [GPT-3.5-turbo-1106](https://platform.openai.com/docs/api-reference/chat/create) | [49.37% (5-shot)](https://arxiv.org/pdf/2403.20180)       |        -       |         -           |    7.1         |      128k        |        ✅         |     	41.76%^      |
| [Qwen1.5-110B-Chat](https://huggingface.co/Qwen/Qwen1.5-110B-Chat)                                                         | **75.69%**       |   66.67%    |    49.28%                |     -         |       32k       |        ✅         |    65.81%      |
| [Yi-34B-Chat](https://huggingface.co/01-ai/Yi-34B-Chat)                                                              | 73.59%       |    71.43%           |          55.02%          |      6.9        |      200k        |        ✅         |      64.10%     |
| [Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct)                                           | 70.95%       |       65.08%        |       52.63%             |      -        |       8k       |        ✅         |   62.75%        |
| [Mixtral-8x22B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1)                                     | 55.57%       |     52.38%          |      44.98%              |      -        |       64k       |        ✅         |         52.16%  |
| [Breexe-8x7B-Instruct-v0_1](https://huggingface.co/MediaTek-Research/Breexe-8x7B-Instruct-v0_1)     | -       |      -         |           -         |      7.2        |      8k        |        ❓         |     48.92%      |
| [c4ai-command-r-plus](https://huggingface.co/CohereForAI/c4ai-command-r-plus)                                                | 62.87%       |      64.29%         |         34.45%           |         -     |         128k     |        ✅         |      49.75%     |
| [Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct)                                            | 55.81%       |     46.83%          |     35.89%               |       -       |        8k      |        ✅         |       43.38%    |
| [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0)                                      | 55.57%       |     52.38%          |      39.23%              |     6.0         |      32k        |        ❓         |       41.77%    |
| [Llama3-TAIDE-LX-8B-Chat-Alpha1](https://huggingface.co/taide/Llama3-TAIDE-LX-8B-Chat-Alpha1)                                           | 47.30%       |  50.79%             |   37.80%                 |       -       |     8k         |        ❓         |      39.03%     |
| [Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct)                                               | 40.97%       |     37.30%          |      27.27%              |      -        |   4k           |        ❓         |        33.02%   |

Numbers are 0-shot by default.

[Eval implementation](https://github.com/adamlin120/lm-evaluation-harness)

^ taken the closet matching numbers from original dataset.

## Needle in a Haystack Evaluation

The "Needle in a 出師表" evaluation tests the model's ability to locate and recall important information embedded within a large body of text, using the classic Chinese text 《出師表》 by 諸葛亮.

To run the evaluation, use the [script](https://github.com/adamlin120/needle-haystack/tree/main).


# TW MT-Bench Score

- Average Score: 7.5375
- Maximum Score: 10
- Minimum Score: 1
- Median Score: 9.0
- Standard Deviation: 3.0349783771882133
- Total Number of Scores: 160
- [Model resopnse](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc1/blob/main/Llama-3-Taiwan.jsonl)
- [GPT-4 Eval](https://huggingface.co/yentinglin/Llama-3-Taiwan-70B-Instruct-rc1/blob/main/gpt-4_single.jsonl)
- [Code fork from `mtkresearch/TCEval` with bug fixing](https://github.com/adamlin120/TCEval)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/hfstnJElgB39Um4Bco11D.png)


# Use Cases

Llama-3-Taiwan-70B can be applied to a wide variety of NLP tasks in Traditional Chinese and English, including:

<details>
<summary>1. 多輪對話</summary>

<pre>
System: You are an AI assistant called Twllm, created by TAME (TAiwan Mixture of Expert) project.

User: 嗨,你好!

Assistant: 你好!我今天可以如何協助你?

User: 就想聊天而已....

Assistant: 當然,我很樂意和你聊天!有什麼特別想談論的嗎?
</pre>

</details>

<details>
<summary>2. RAG(檢索增強生成)</summary>

Demo: 可以打開 `Search Web` on [twllm.com](https://twllm.com/)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/Zcl20NsPmY2vObIaMtT8G.png)


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/xuXEHIkMgDEB7xxDd3JoL.png)

<pre>
System: You are an AI assistant called Twllm, created by TAME (TAiwan Mixture of Expert) project.

User: 明天台大天氣如何?

Assistant: 根據天氣預報,明天台大天氣為陣雨。低溫 24°C。10 到 15 公里/小時 的 東 風 。降雨機率為 40%。
</pre>

</details>

<details>
<summary>3. 格式化輸出, 語言理解, 實體識別, 函數調用</summary>

If you are interested in function-calling, I strongly recommend [using constrained decoding](https://huggingface.co/docs/text-generation-inference/basic_tutorials/using_guidance) to turn on `json mode`.

Example from HW7 in `INTRODUCTION TO GENERATIVE AI 2024 SPRING` from `HUNG-YI LEE (李宏毅)`


![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/dCGo92llL3_ammH_Nu2-c.png)

<pre>
System: You are an AI assistant called Twllm, created by TAME (TAiwan Mixture of Expert) project.

User: 您是電影評論分析師,負責情緒分析。
分析每個被評論的句子,評估句子中每個字和標點符號的重要性,
並且將結果使用 tuple 的結構列出。
tuple 值的範圍介於 -1 (負向) 到 1 (正向) 之間,
然後,將評論分類為正向 (1) 或負向 (-1)。
這些需要被評論的句子,包含在 <review> 標籤中間。

輸出範例:
[(<單字或標點符號>, <float importance>), ...]
<int classification>
<review> 根據外媒報導,宏都拉斯在去年3月與台灣斷交,並轉往與中國建交之後,卻遲遲等不到中國的金援,談好要進口宏都拉斯的白蝦也拖延許久,甚至還將白蝦價格殺價至過往與台灣交易的半價,再加上墨西哥同時也中斷了與宏國的白蝦貿易,對當地蝦農可說是雪上加霜。 <review>
  

Assistant: [('根據', 0.2), ('外媒', 0.1), ('報導', -0.1), (',', 0.05), ('宏都拉斯', -0.3), ('在去年3月與台灣斷交, ', -0.5), ('並轉往與中國建交之後, ', -0.4), ('卻遲遲等不到中國的金援, ', -1),
('談好要進口宏都拉斯的白蝦也拖延許久, ', -1),
(',甚至還將白蝦價格殺價至過往與台灣交易的半價,再加上墨西哥同時也中斷了與宏國的白蝦貿易,對當地蝦農可說是雪上加霜。 ',-1)]
-1

</pre>
</details>





# Get Started

*Caveat: System message should always be set.*

## Hugging Face Transformers library
You can use Llama-3-Taiwan-70B with the Hugging Face Transformers library:


```python
import torch
from transformers import pipeline, StoppingCriteria

# Define a custom stopping criteria class
class EosListStoppingCriteria(StoppingCriteria):
    def __init__(self, eos_sequence=[128256]):
        self.eos_sequence = eos_sequence

    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        last_ids = input_ids[:, -len(self.eos_sequence):].tolist()
        return self.eos_sequence in last_ids

# Initialize the model with automatic device mapping
llm = pipeline("text-generation", model="yentinglin/Llama-3-Taiwan-70B-Instruct-rc1", device_map="auto")
tokenizer = llm.tokenizer

# Define a conversation example
chat = [
    {"role": "system", "content": "You are an AI assistant called Twllm, created by TAME (TAiwan Mixture of Expert) project."},
    {"role": "user", "content": "你好,請問你可以完成什麼任務?"},
    {"role": "assistant", "content": "你好,我可以幫助您解決各種問題、提供資訊並協助完成多種任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。"},
    {"role": "user", "content": "太棒了!"}
]
flatten_chat_for_generation = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
"""
<|im_start|>user
You are an AI assistant called Twllm, created by TAME (TAiwan Mixture of Expert) project.<|im_end|>
<|im_start|>user
你好,請問你可以完成什麼任務?<|im_end|>
<|im_start|>assistant
你好,我可以幫助您解決各種問題、提供資訊和協助您完成許多不同的任務。例如:回答技術問題、提供建議、翻譯文字、尋找資料或協助您安排行程等。請告訴我如何能幫助您。<|im_end|>
<|im_start|>user
太棒了!<|im_end|>
<|im_start|>assistant

"""

# Generate a response using the custom stopping criteria
output = llm(flatten_chat_for_generation, return_full_text=False, max_new_tokens=128, top_p=0.9, temperature=0.7, stopping_criteria=[EosListStoppingCriteria([tokenizer.eos_token_id])])
print(output[0]['generated_text'])
"謝謝!很高興能夠為您服務。如果有任何其他需要協助的地方,請隨時與我聯繫。我會盡最大努力為您提供所需的支援。"
```

## vLLM

Start the server
```bash
export NUM_GPUS=4
export PORT=8000

docker run \
  -e HF_TOKEN=$HF_TOKEN \
  --gpus '"device=0,1,2,3"' \
  -v ~/.cache/huggingface:/root/.cache/huggingface \
  -p "${PORT}:8000" \
  --ipc=host \
  vllm/vllm-openai:v0.4.0.post1 \
  --model "yentinglin/Llama-3-Taiwan-70B-Instruct-rc1" \
  -tp "${NUM_GPUS}"
```

Sample client code, or you can use anything OpenAI-API compatible clients

```python
# pip install "openai>=1.0.0"
from openai import OpenAI
# Set OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"

client = OpenAI(
    api_key=openai_api_key,
    base_url=openai_api_base,
)

chat_response = client.chat.completions.create(
    model="yentinglin/Llama-3-Taiwan-70B-Instruct-rc1",
    messages=[
        {"role": "system", "content": "You are a helpful assistant."},
        {"role": "user", "content": "Tell me a joke."},
    ]
)
print("Chat response:", chat_response)
```


Enjoy exploring the capabilities of Llama-3-Taiwan-70B! We look forward to seeing what you create with this powerful open-source model. If you have any questions or feedback, please let us know.

# Contributions
- [**Professor Yun-Nung (Vivian) Chen**](https://www.csie.ntu.edu.tw/~yvchen/), for her guidance and advisement throughout the project.
- [**Wei-Lin Chen**](mailto:[email protected]), for leading our pretraining data pipeline.
- [**Tzu-Han Lin**](mailto:[email protected]), for synthetic data generation.
- [**Chang-Sheng Kao**](mailto:[email protected]), for enhancing our synthetic data quality.
- [**Kang-Chieh Chen**](mailto:[email protected]), for cleaning instruction-following data.
- [**Min-Yi Chen**](mailto:[email protected]) and [**Shao-Heng Hsu**](mailto:[email protected]), for collecting chemical engineering data and benchmarks.
- Chung-Yao Ma, Jonathan Guo and Kai-Chun Chang, for collecting manufacturing and electrical engineering data and benchmarks, and project progress management

# Citation
```
@article{DBLP:journals/corr/abs-2311-17487,
  author       = {Yen{-}Ting Lin and
                  Yun{-}Nung Chen},
  title        = {Taiwan {LLM:} Bridging the Linguistic Divide with a Culturally Aligned
                  Language Model},
  journal      = {CoRR},
  volume       = {abs/2311.17487},
  year         = {2023},
  url          = {https://doi.org/10.48550/arXiv.2311.17487},
  doi          = {10.48550/ARXIV.2311.17487},
  eprinttype    = {arXiv},
  eprint       = {2311.17487},
  timestamp    = {Tue, 05 Dec 2023 14:40:42 +0100},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2311-17487.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}
}
@article{DBLP:journals/corr/abs-2403-20180,
  author       = {Po{-}Heng Chen and
                  Sijia Cheng and
                  Wei{-}Lin Chen and
                  Yen{-}Ting Lin and
                  Yun{-}Nung Chen},
  title        = {Measuring Taiwanese Mandarin Language Understanding},
  journal      = {CoRR},
  volume       = {abs/2403.20180},
  year         = {2024},
  url          = {https://doi.org/10.48550/arXiv.2403.20180},
  doi          = {10.48550/ARXIV.2403.20180},
  eprinttype    = {arXiv},
  eprint       = {2403.20180},
  timestamp    = {Wed, 10 Apr 2024 17:37:45 +0200},
  biburl       = {https://dblp.org/rec/journals/corr/abs-2403-20180.bib},
  bibsource    = {dblp computer science bibliography, https://dblp.org}