|
import requests |
|
from typing import Dict, Any |
|
from PIL import Image |
|
import torch |
|
from io import BytesIO |
|
from transformers import BlipForConditionalGeneration, BlipProcessor |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
self.processor = BlipProcessor.from_pretrained( |
|
"Salesforce/blip-image-captioning-large") |
|
self.model = BlipForConditionalGeneration.from_pretrained( |
|
"Salesforce/blip-image-captioning-large" |
|
).to(device) |
|
self.model.eval() |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
input_data = data.get("inputs", {}) |
|
image_urls = input_data.get("image_urls", []) |
|
|
|
if not image_urls: |
|
return {"captions": [], "error": "No images provided"} |
|
|
|
texts = input_data.get( |
|
"texts", [""] * len(image_urls)) |
|
|
|
if len(image_urls) != len(texts): |
|
return { |
|
"captions": [], |
|
"error": "Texts and images should have the same length" |
|
} |
|
|
|
images_data = [requests.get(url).content for url in image_urls] |
|
|
|
try: |
|
raw_images = [ |
|
Image.open(BytesIO((img))).convert("RGB") |
|
for img in images_data] |
|
processed_inputs = [ |
|
self.processor(image, text, return_tensors="pt") |
|
for image, text in zip(raw_images, texts) |
|
] |
|
processed_inputs = { |
|
"pixel_values": torch.cat( |
|
[inp["pixel_values"] |
|
for inp in processed_inputs], dim=0).to(device), |
|
"input_ids": torch.cat( |
|
[inp["input_ids"] |
|
for inp in processed_inputs], dim=0).to(device), |
|
"attention_mask": torch.cat( |
|
[inp["attention_mask"] |
|
for inp in processed_inputs], dim=0).to(device) |
|
} |
|
|
|
with torch.no_grad(): |
|
out = self.model.generate(**processed_inputs) |
|
|
|
captions = self.processor.batch_decode( |
|
out, skip_special_tokens=True) |
|
return {"captions": captions} |
|
except Exception as e: |
|
print(f"Error during processing: {str(e)}") |
|
return {"captions": [], "error": str(e)} |
|
|