File size: 4,945 Bytes
a38cbb4 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 ead7c74 3f61347 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
datasets:
- chillies/course-review-multilabel-sentiment-analysis
language:
- en
metrics:
- accuracy
- f1
library_name: transformers
---
# distilbert-course-review-classification
[](https://huggingface.co/username/distilbert-course-review-classification)
## Description
**distilbert-course-review-classification** is a fine-tuned version of DistilBERT, specifically trained for sentiment analysis of online course reviews. This model categorizes reviews into the following classes:
- Improvement Suggestions
- Questions
- Confusion
- Support Request
- Discussion
- Course Comparison
- Related Course Suggestions
- Negative
- Positive
## Installation
To use this model, you will need to install the following dependencies:
```bash
pip install transformers
pip install torch # or tensorflow depending on your preference
```
## Usage
Here is how you can load and use the model in your code:
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("username/distilbert-course-review-classification")
model = AutoModelForSequenceClassification.from_pretrained("username/distilbert-course-review-classification")
# Example usage
review = "The course content is great, but I would like more examples."
inputs = tokenizer(review, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Assuming the model outputs logits
predicted_class = outputs.logits.argmax(dim=-1).item()
class_labels = [
'Improvement Suggestions', 'Questions', 'Confusion', 'Support Request',
'Discussion', 'Course Comparison', 'Related Course Suggestions',
'Negative', 'Positive'
]
print(f"Predicted class: {class_labels[predicted_class]}")
```
### Inference
Provide example code for performing inference with your model:
```python
# Example inference
review = "I found the course material very confusing and hard to follow."
inputs = tokenizer(review, return_tensors="pt", padding=True, truncation=True)
outputs = model(**inputs)
# Assuming the model outputs logits
predicted_class = outputs.logits.argmax(dim=-1).item()
class_labels = [
'Improvement Suggestions', 'Questions', 'Confusion', 'Support Request',
'Discussion', 'Course Comparison', 'Related Course Suggestions',
'Negative', 'Positive'
]
print(f"Predicted class: {class_labels[predicted_class]}")
```
### Training
If your model can be trained further, provide instructions for training:
```python
# Example training code
from transformers import Trainer, TrainingArguments
training_args = TrainingArguments(
output_dir="./results",
evaluation_strategy="epoch",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
```
## Training Details
### Training Data
The model was fine-tuned on a dataset of online course reviews, labeled with the following sentiment categories:
- Improvement Suggestions
- Questions
- Confusion
- Support Request
- Discussion
- Course Comparison
- Related Course Suggestions
- Negative
- Positive
### Training Procedure
The model was fine-tuned using a standard training approach, optimizing for accurate sentiment classification. Training was conducted on [describe hardware, e.g., GPUs, TPUs] over [number of epochs] epochs with [any relevant hyperparameters].
## Evaluation
### Metrics
The model was evaluated using the following metrics:
- **Accuracy**: X%
- **Precision**: Y%
- **Recall**: Z%
- **F1 Score**: W%
### Comparison
The performance of distilbert-course-review-classification was benchmarked against other sentiment analysis models, demonstrating superior accuracy and relevance in classifying online course reviews.
## Limitations and Biases
While distilbert-course-review-classification is highly effective, it may have limitations in the following areas:
- It may not fully understand the context of complex reviews.
- There may be biases present in the training data that could affect the classification results.
## How to Contribute
We welcome contributions! Please see our [contributing guidelines](link_to_contributing_guidelines) for more information on how to contribute to this project.
## License
This model is licensed under the [MIT License](LICENSE).
## Acknowledgements
We would like to thank the contributors and the creators of the datasets used for training this model.
```
### Tips for Completing the Template
1. **Replace placeholders** (like `username`, `training data`, `evaluation metrics`) with your actual data.
2. **Include any additional information** specific to your model or training process.
3. **Keep the document updated** as the model evolves or more information becomes available. |