chillies commited on
Commit
a8fe203
·
verified ·
1 Parent(s): c5abc56

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +145 -22
README.md CHANGED
@@ -1,22 +1,145 @@
1
- ---
2
- language:
3
- - en
4
- license: apache-2.0
5
- tags:
6
- - text-generation-inference
7
- - transformers
8
- - unsloth
9
- - llama
10
- - trl
11
- base_model: vilm/vinallama-2.7b-chat
12
- ---
13
-
14
- # Uploaded model
15
-
16
- - **Developed by:** chillies
17
- - **License:** apache-2.0
18
- - **Finetuned from model :** vilm/vinallama-2.7b-chat
19
-
20
- This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
21
-
22
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # vinallama-legal-chat
3
+
4
+ [![Model Card](https://img.shields.io/badge/Hugging%20Face-Model%20Card-blue)](https://huggingface.co/username/vinallama-legal-chat)
5
+
6
+ ## Description
7
+
8
+ **vinallama-legal-chat** is a fine-tuned version of vinallama-2-7b, specifically trained for Vietnamese legal conversations. This model is designed to assist in providing accurate legal advice and information in Vietnamese, making it a valuable tool for legal professionals and individuals seeking legal guidance.
9
+
10
+ ## Installation
11
+
12
+ To use this model, you will need to install the following dependencies:
13
+
14
+ ```bash
15
+ pip install transformers
16
+ pip install torch # or tensorflow depending on your preference
17
+ ```
18
+
19
+ ## Usage
20
+
21
+ Here is how you can load and use the model in your code:
22
+
23
+ ```python
24
+ from transformers import AutoTokenizer, AutoModelForCausalLM
25
+
26
+ tokenizer = AutoTokenizer.from_pretrained("username/vinallama-legal-chat")
27
+ model = AutoModelForCausalLM.from_pretrained("username/vinallama-legal-chat")
28
+
29
+ # Example usage
30
+ chat_template = """
31
+ <<SYS>>
32
+ Bạn là một chuyên viên tư vấn pháp luật Việt Nam. Bạn có nhiều năm kinh nghiệm và kiến thức chuyên sâu. Bạn sẽ cung cấp câu trả lời về pháp luật, tư vấn luật pháp cho các câu hỏi của User.
33
+ <</SYS>>
34
+ ## user:
35
+ Tạm trú là gì?
36
+
37
+ ## assistant:
38
+ """
39
+
40
+ inputs = tokenizer(chat_template, return_tensors="pt")
41
+ outputs = model.generate(**inputs)
42
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
43
+
44
+ print(response)
45
+ ```
46
+
47
+ ### Inference
48
+
49
+ Provide example code for performing inference with your model:
50
+
51
+ ```python
52
+ # Example inference
53
+ user_input = "Tạm trú là gì?"
54
+ chat_template = f"""
55
+ <<SYS>>
56
+ Bạn là một chuyên viên tư vấn pháp luật Việt Nam. Bạn có nhiều năm kinh nghiệm và kiến thức chuyên sâu. Bạn sẽ cung cấp câu trả lời về pháp luật, tư vấn luật pháp cho các câu hỏi của User.
57
+ <</SYS>>
58
+ ## user:
59
+ {user_input}
60
+
61
+ ## assistant:
62
+ """
63
+
64
+ inputs = tokenizer(chat_template, return_tensors="pt")
65
+ outputs = model.generate(**inputs)
66
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
67
+
68
+ print(response)
69
+ ```
70
+
71
+ ### Training
72
+
73
+ If your model can be trained further, provide instructions for training:
74
+
75
+ ```python
76
+ # Example training code
77
+ from transformers import Trainer, TrainingArguments
78
+
79
+ training_args = TrainingArguments(
80
+ output_dir="./results",
81
+ evaluation_strategy="epoch",
82
+ per_device_train_batch_size=8,
83
+ per_device_eval_batch_size=8,
84
+ num_train_epochs=3,
85
+ weight_decay=0.01,
86
+ )
87
+
88
+ trainer = Trainer(
89
+ model=model,
90
+ args=training_args,
91
+ train_dataset=train_dataset,
92
+ eval_dataset=eval_dataset,
93
+ )
94
+
95
+ trainer.train()
96
+ ```
97
+
98
+ ## Training Details
99
+
100
+ ### Training Data
101
+
102
+ The model was fine-tuned on a dataset of Vietnamese legal conversations. This dataset includes a variety of legal questions and answers, covering a wide range of legal topics to ensure comprehensive legal advice.
103
+
104
+ ### Training Procedure
105
+
106
+ The model was fine-tuned using a standard training approach, optimizing for accuracy and relevance in legal responses. Training was conducted on [describe hardware, e.g., GPUs, TPUs] over [number of epochs] epochs with [any relevant hyperparameters].
107
+
108
+ ## Evaluation
109
+
110
+ ### Metrics
111
+
112
+ The model was evaluated using the following metrics:
113
+
114
+ - **Accuracy**: X%
115
+ - **Relevance**: Y%
116
+ - **Comprehensiveness**: Z%
117
+
118
+ ### Comparison
119
+
120
+ The performance of vinallama-legal-chat was benchmarked against other legal advice models, demonstrating superior accuracy and relevance in the Vietnamese legal domain.
121
+
122
+ ## Limitations and Biases
123
+
124
+ While vinallama-legal-chat is highly effective, it may have limitations in the following areas:
125
+ - It may not be up-to-date with the latest legal changes.
126
+ - There may be biases present in the training data that could affect responses.
127
+
128
+ ## How to Contribute
129
+
130
+ We welcome contributions! Please see our [contributing guidelines](link_to_contributing_guidelines) for more information on how to contribute to this project.
131
+
132
+ ## License
133
+
134
+ This model is licensed under the [MIT License](LICENSE).
135
+
136
+ ## Acknowledgements
137
+
138
+ We would like to thank the contributors and the creators of the datasets used for training this model.
139
+ ```
140
+
141
+ ### Tips for Completing the Template
142
+
143
+ 1. **Replace placeholders** (like `username`, `training data`, `evaluation metrics`) with your actual data.
144
+ 2. **Include any additional information** specific to your model or training process.
145
+ 3. **Keep the document updated** as the model evolves or more information becomes available.