Update README.md
Browse files
README.md
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
-
---
|
2 |
-
library_name: transformers
|
3 |
-
tags:
|
4 |
-
- code
|
5 |
-
license: mit
|
6 |
-
datasets:
|
7 |
-
- iamtarun/python_code_instructions_18k_alpaca
|
8 |
-
pipeline_tag: text-generation
|
9 |
-
|
|
|
|
|
10 |
|
11 |
# PyCodeGen 350M
|
12 |
|
@@ -32,6 +34,10 @@ Finally model has been adapted to the Python language by training on the BigPyth
|
|
32 |
The dataset contains problem descriptions and code in python language.
|
33 |
This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
34 |
|
|
|
|
|
|
|
|
|
35 |
|
36 |
## Example of usage
|
37 |
|
@@ -68,25 +74,25 @@ print(tokenizer.decode(output[0], skip_special_tokens=True))
|
|
68 |
## Training parameters
|
69 |
|
70 |
BitsAndBytes:
|
71 |
-
- load_in_4bit
|
72 |
-
- bnb_4bit_quant_type
|
73 |
-
- bnb_4bit_use_double_quant
|
74 |
-
- bnb_4bit_compute_dtype
|
75 |
|
76 |
LoraConfig:
|
77 |
-
- r
|
78 |
-
- lora_alpha
|
79 |
-
- target_modules
|
80 |
-
- lora_dropout
|
81 |
-
- bias
|
82 |
-
- task_type
|
83 |
|
84 |
Finetuning:
|
85 |
-
- num_epochs
|
86 |
-
- train_batch_size
|
87 |
-
- eval_batch_size
|
88 |
-
- gradient_accumulation_steps
|
89 |
-
- learning_rate
|
90 |
-
- weight_decay
|
91 |
-
- lr_scheduler_name
|
92 |
-
- num_warmup_steps
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- code
|
5 |
+
license: mit
|
6 |
+
datasets:
|
7 |
+
- iamtarun/python_code_instructions_18k_alpaca
|
8 |
+
pipeline_tag: text-generation
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
---
|
12 |
|
13 |
# PyCodeGen 350M
|
14 |
|
|
|
34 |
The dataset contains problem descriptions and code in python language.
|
35 |
This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
|
36 |
|
37 |
+
## Intended uses
|
38 |
+
|
39 |
+
The model can be used to generate python code that solves task with optionally given input data.
|
40 |
+
|
41 |
|
42 |
## Example of usage
|
43 |
|
|
|
74 |
## Training parameters
|
75 |
|
76 |
BitsAndBytes:
|
77 |
+
- load_in_4bit: True,
|
78 |
+
- bnb_4bit_quant_type: nf4,
|
79 |
+
- bnb_4bit_use_double_quant: True,
|
80 |
+
- bnb_4bit_compute_dtype: torch.bfloat16
|
81 |
|
82 |
LoraConfig:
|
83 |
+
- r: 32,
|
84 |
+
- lora_alpha: 16,
|
85 |
+
- target_modules: all-linear,
|
86 |
+
- lora_dropout: 0.1,
|
87 |
+
- bias: none,
|
88 |
+
- task_type: CASUAL_LM
|
89 |
|
90 |
Finetuning:
|
91 |
+
- num_epochs: 15
|
92 |
+
- train_batch_size: 4
|
93 |
+
- eval_batch_size: 8
|
94 |
+
- gradient_accumulation_steps: 8
|
95 |
+
- learning_rate: 3e-4
|
96 |
+
- weight_decay: 0.01
|
97 |
+
- lr_scheduler_name: cosine
|
98 |
+
- num_warmup_steps: 190
|