chintagunta85 commited on
Commit
77e66eb
·
1 Parent(s): db3d5f5

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ datasets:
5
+ - bc2gm_corpus
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
+ - accuracy
11
+ model-index:
12
+ - name: biobert-base-cased-v1.2-bc2gm-ner
13
+ results:
14
+ - task:
15
+ name: Token Classification
16
+ type: token-classification
17
+ dataset:
18
+ name: bc2gm_corpus
19
+ type: bc2gm_corpus
20
+ config: bc2gm_corpus
21
+ split: train
22
+ args: bc2gm_corpus
23
+ metrics:
24
+ - name: Precision
25
+ type: precision
26
+ value: 0.7988356059445381
27
+ - name: Recall
28
+ type: recall
29
+ value: 0.8243478260869566
30
+ - name: F1
31
+ type: f1
32
+ value: 0.8113912231559292
33
+ - name: Accuracy
34
+ type: accuracy
35
+ value: 0.9772069842818806
36
+ ---
37
+
38
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
39
+ should probably proofread and complete it, then remove this comment. -->
40
+
41
+ # biobert-base-cased-v1.2-bc2gm-ner
42
+
43
+ This model is a fine-tuned version of [dmis-lab/biobert-base-cased-v1.2](https://huggingface.co/dmis-lab/biobert-base-cased-v1.2) on the bc2gm_corpus dataset.
44
+ It achieves the following results on the evaluation set:
45
+ - Loss: 0.1528
46
+ - Precision: 0.7988
47
+ - Recall: 0.8243
48
+ - F1: 0.8114
49
+ - Accuracy: 0.9772
50
+
51
+ ## Model description
52
+
53
+ More information needed
54
+
55
+ ## Intended uses & limitations
56
+
57
+ More information needed
58
+
59
+ ## Training and evaluation data
60
+
61
+ More information needed
62
+
63
+ ## Training procedure
64
+
65
+ ### Training hyperparameters
66
+
67
+ The following hyperparameters were used during training:
68
+ - learning_rate: 2e-05
69
+ - train_batch_size: 16
70
+ - eval_batch_size: 16
71
+ - seed: 42
72
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
73
+ - lr_scheduler_type: linear
74
+ - num_epochs: 10
75
+
76
+ ### Training results
77
+
78
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
79
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
80
+ | 0.057 | 1.0 | 782 | 0.0670 | 0.7446 | 0.8051 | 0.7736 | 0.9738 |
81
+ | 0.0586 | 2.0 | 1564 | 0.0689 | 0.7689 | 0.8106 | 0.7892 | 0.9755 |
82
+ | 0.0123 | 3.0 | 2346 | 0.0715 | 0.7846 | 0.8076 | 0.7959 | 0.9750 |
83
+ | 0.0002 | 4.0 | 3128 | 0.0896 | 0.7942 | 0.8199 | 0.8068 | 0.9767 |
84
+ | 0.0004 | 5.0 | 3910 | 0.1119 | 0.7971 | 0.8201 | 0.8084 | 0.9765 |
85
+ | 0.0004 | 6.0 | 4692 | 0.1192 | 0.7966 | 0.8337 | 0.8147 | 0.9768 |
86
+ | 0.013 | 7.0 | 5474 | 0.1274 | 0.7932 | 0.8266 | 0.8095 | 0.9773 |
87
+ | 0.0236 | 8.0 | 6256 | 0.1419 | 0.7976 | 0.8213 | 0.8093 | 0.9771 |
88
+ | 0.0004 | 9.0 | 7038 | 0.1519 | 0.8004 | 0.8261 | 0.8130 | 0.9772 |
89
+ | 0.0 | 10.0 | 7820 | 0.1528 | 0.7988 | 0.8243 | 0.8114 | 0.9772 |
90
+
91
+
92
+ ### Framework versions
93
+
94
+ - Transformers 4.23.1
95
+ - Pytorch 1.12.1+cu113
96
+ - Datasets 2.6.1
97
+ - Tokenizers 0.13.1