{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f997703fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f997703feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f997703ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9977048040>", "_build": "<function ActorCriticPolicy._build at 0x7f99770480d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9977048160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99770481f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9977048280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9977048310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99770483a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9977048430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99770484c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713447788833560882, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAKBWdz5zHQC732K+Ph05Mbx8e769K4Yqv9yPFL+4Srk+AAAAAEsljj8AAAAAkMUBPv//fz8AAAAAOZGZPnOZmz70QqE+EyGrPsi3uj5Ng9E+N7XyPkAIFz+ETF8/AACAP4/pSD1zeom6P+umPPJoXL7Adp2+/f9/v4CwUDwAAIA/AAAAANgvjD9mpbI/p5URPwEAgL8AAAAAKqzGPsLtyD729c8+PaPcPp+38D5Twwc/CM4fP3KkRz8AAIA/AACAP2TL3z5qh6E8Ut2vPlhQqjpxQHy+qU1EvjAKI7/VXkk9AACAP4uJjz8AAAAAmPKKPQIAgD8AAAAA34uUPv1WlD5WrZc+fdiePoMurT6Fi8E+ItPePnSEBz9xpy8/W/1+P8vP2jn26uA8qYwDP62+oztRNZa+cKt/P+TK2L5b93+/AAAAAE0kkD8AYO43ANkNO82qUb8AAIA/K9ykPiSzqj5EBLU+41rEPsJj1z7DUvk+v2QXP3nbQT8AAIA/AACAP+9/Lz50IRi+TJ30Ph2UkjwD+SS//P9/P1BdqD0RqzS/AACAP/v1mD967as/ECaPvfv/f78AAIA/q4aXPqGNmT48TJ8+GsqoPp1Atz6Q9co+D3rsPivBEj9/pEM/AACAP2ODiT7ACDW8gY3qPkltVD10yJ2+//9/vyg4nr5PS08/AAAAAN33jz/cOD4/6ENfvv3/fz8AAAAAWPCmPg+HqD50u6w+EV20PgQfvz7yQ88+A6nqPpfCDT+N0Ts/AACAP/pwyD6Dztc8CZzNPv0SiDzFYpW+/v9/v/Dz8b6vXAg/AACAP+KYiT/Yp8Y84GMyvv3/fz8AAAAA4YyfPjkxoD7NWKM+J5+pPvKCtT5uQ8g+98fmPgidED9+akc/AACAPx53jj4NRAC9kQ3yPqXBELtj3iO/Gbh8v0Bc272C34I/AAAAAJT/jj8AkPK4QFFPPInwfz8AAAAAQnyNPkyAjz6lcZU+lSGgPrJJsT7FQco+DE7yPnM1FD9tvEQ/AACAPzkmez4WTT69xzrDPor7bT3gltm+q7zgvgB97L3J8io/AAAAACepgD+8dDe+9p4VP/3/fz8AAAAA8+SaPuPImj6FbZ8+GdmoPuhAuD7r1c8+BYT7PpbzJD/HWW4/AACAPwvruT5qQR089OYBP48BkjxfxTW/vDCVvwBXOD01tYA/AACAP0Phiz8TKPG+SP3kPg8AgL8AAAAAOmWbPo79mT4vb5s+keOgPrQTqz66778+XQfePshlBT+ioS8/AACAP2h8gT5cIj29lMD4PgGjVrtUr0W/hGYgPpoWrj6UQDU+AACAPzYQjz8AAAAAIm2SPvz/f78AAAAAbX6sPiZ+sD6rK7k+0tjHPlkj4j5ypAQ/rE4hP/xVUD8AAIA/AACAP/qxFT7arJA8jo0JPw0Bob1RthK+LHiNv67rEb+Nevw+AACAP0/+jD8AAAAAwG9kvgMAgD8AAAAAtUaaPnqLnj7khqc+i7G1PkTiyD5Om+U+PbkHP4DuLj+toXA/AACAP9kuTD7Yjd088IK+PgOOiDxOEJ29/v9/v95ICr8PhwI/AACAP7KRjT8AAAAAGn0Mv2MlnD4AAIA/GzqhPpAVoz5wy6g+NXyyPq9Yvz4SsdE+6YjwPtx6Ez+v4Us/AACAPyznxD7sp+I8giGzPu2Ke7tX/T+/u3lxv3Dn070jOjI/AAAAAMY/hj///3+/fJAwPgAAgD8AAAAAQWCMPl34jT5V8JI+WeWbPmIVqj4f2r8+ldPhPq8PDT9bYT8/AACAP5Qsaz2Irro8pRHZPvcY5TyCOIS+Yk+Hv0BDN72o1Uc/AAAAAKTFhz8mdqe+DPr2PoPrIj8AAAAA0DOxPufMtT5Uer4+wjHMPgnb3z5sxPs+47ATP2hqNj/jkHg/AACAP32BcD7EUIs8mwjAPh0yhj2bdxm/Mqx/P7BKLj0o/3+/AAAAAGQYkD8AQN83AFXTO0xjF78AAIA/tVGZPpQ3mD6Lqpo+cnajPg5Bsj5/Eck+LN3rPnKoET/OA0o/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHAwz/p+tr+MAWyUTaQEjAF0lEdAtEEwFKTSs3V9lChoBkdAb64fZmI0qGgHTfoEaAhHQLRBi2c8Tzx1fZQoaAZHQHBSHeaa1CxoB02GBGgIR0C0QbuuFHrhdX2UKGgGR0BwI6bWmP5paAdNrARoCEdAtEIGa8YhuHV9lChoBkdAcBO9Pk7wKGgHTccEaAhHQLRCEUL2HtZ1fZQoaAZHQHAk030f5k9oB02/BGgIR0C0RLwkTpPidX2UKGgGR0BwR+NAC4jKaAdNpARoCEdAtEUaiM5wO3V9lChoBkdAb8+C7sfJWGgHTewEaAhHQLRFWH5aePJ1fZQoaAZHQG/hGJN0vGpoB03KBGgIR0C0RkbbQC0XdX2UKGgGR0BI8blzU7SzaAdNEwNoCEdAtEi23fAKv3V9lChoBkdAb9+KsMiKSGgHTdoEaAhHQLRIzhsImgJ1fZQoaAZHQG/EmqYJE6VoB03wBGgIR0C0SrhHLA58dX2UKGgGR0BvquQjlgc+aAdN6ARoCEdAtFDhFVktmXV9lChoBkdAcBcKHwgDBGgHTcQEaAhHQLRRBUA1ejV1fZQoaAZHQHAkIgaFVT9oB02jBGgIR0C0UTsebNKRdX2UKGgGR0BvmvHHWBjGaAdN7QRoCEdAtFGptcfNinV9lChoBkdAcCIZzxPO6mgHTbwEaAhHQLRSAOoYNy51fZQoaAZHQG8pQvxpcopoB00iBWgIR0C0Ui2fPHDKdX2UKGgGR0AepIuoP07KaAdNcAJoCEdAtFKGc3EQ5HV9lChoBkdAcDxzI3irDWgHTZwEaAhHQLRSu85S3sp1fZQoaAZHQG8bWJSBK+VoB00UBWgIR0C0U3T+NtIkdX2UKGgGR0Bv01vbXYlIaAdN3QRoCEdAtFOQkzGgjHV9lChoBkdAcC6OpKjBVWgHTaUEaAhHQLRVSLeyiVV1fZQoaAZHQHAvAGGEf1ZoB02hBGgIR0C0VaWBBiTddX2UKGgGR0BwSeufVZs9aAdNmwRoCEdAtFay/O+qR3V9lChoBkdAb1pDNyHVPWgHTQ0FaAhHQLRXIkZrHlx1fZQoaAZHQG/D6VUuL75oB03pBGgIR0C0Whw7kn1GdX2UKGgGR0BwA/9If8uSaAdNygRoCEdAtF+DmwJPZnV9lChoBkdAcFpJf6XSjWgHTYoEaAhHQLRhMGmk30h1fZQoaAZHQG+3u5BkZrJoB03fBGgIR0C0YodATqSpdX2UKGgGR0Bv2iPIXCTEaAdN3QRoCEdAtGMOcZtNz3V9lChoBkdAcA4hV2icomgHTcIEaAhHQLRjq8DSw4d1fZQoaAZHQHAz+jIq9XdoB02lBGgIR0C0ZDhB/qgRdX2UKGgGR0Bv7RN/OMVDaAdN2QRoCEdAtGRrqX4TK3V9lChoBkfAFxz8P4EfT2gHTUECaAhHQLRkgBHkLhJ1fZQoaAZHQG9uL0J4SpRoB03xBGgIR0C0ZI4FaB7NdX2UKGgGR0Bvi1loUSIyaAdN8gRoCEdAtGVOnm7rcHV9lChoBkdAb7IR8MNMG2gHTeMEaAhHQLRlzOZ9d/t1fZQoaAZHQG81vwuuiexoB00PBWgIR0C0Zm/Q0GeMdX2UKGgGR0BwFu+GoJiRaAdNtQRoCEdAtGenkhib2HV9lChoBkdAb84ldC3PRmgHTdYEaAhHQLRnq/PgNw11fZQoaAZHQG+rO3lS0jVoB03fBGgIR0C0abmb9ZRsdX2UKGgGR0BvnoFxGUfQaAdN4ARoCEdAtGoYpgCwKXV9lChoBkdAQ6Eyi22G7GgHTQ8DaAhHQLRwE0dRzil1fZQoaAZHQG+hvlU6xPhoB03tBGgIR0C0cj8Rg7YDdX2UKGgGR0Bv8JKcurZKaAdNvgRoCEdAtHPFBWxQi3V9lChoBkdAcELN7SiM52gHTZcEaAhHQLR1av/zasZ1fZQoaAZHQHAzRPCVKPJoB02fBGgIR0C0dhRXS0BwdX2UKGgGR0BwQ+Az544ZaAdNiwRoCEdAtHabcgyM1nV9lChoBkdAcEkYNy5qd2gHTZcEaAhHQLR23pkf9xZ1fZQoaAZHQHAAGCqZML5oB02+BGgIR0C0d2MNUfgadX2UKGgGR0Bv1GfK6nR+aAdN3gRoCEdAtHdmrksBhnV9lChoBkdAb3IvxH5JsmgHTfwEaAhHQLR4rOJcgQp1fZQoaAZHQG+4OjqOcUdoB03eBGgIR0C0eYskMTewdX2UKGgGR0BvwwTM7lq8aAdN0QRoCEdAtH86J1q33HV9lChoBkdAbiRLytmthmgHTXAFaAhHQLR/QZzPrv91fZQoaAZHQG+lFaKUFB9oB03oBGgIR0C0f2LkbPyDdX2UKGgGR0BwIzel9BrvaAdNrARoCEdAtIBePNmlInV9lChoBkdAb1AD9Oymh2gHTQYFaAhHQLSCCwX668R1fZQoaAZHQG+X07jkuHxoB031BGgIR0C0g3Puw5eadX2UKGgGR0BwGbdRBNVSaAdNrwRoCEdAtITFmL9/BnV9lChoBkdAcBRyWAwwkGgHTa0EaAhHQLSGIJRO1v51fZQoaAZHQHAahomG/N9oB02mBGgIR0C0h4g40dildX2UKGgGR0BwJTeqJdjYaAdNpARoCEdAtIhdyGSIQHV9lChoBkdAcDKYlIEr5WgHTZsEaAhHQLSIzMvAXVN1fZQoaAZHQHAa0ZaV2RtoB02pBGgIR0C0iTr4FiazdX2UKGgGR0BwQP+98JD3aAdNjgRoCEdAtIlu+De0onV9lChoBkdAcBnLDhtLtmgHTa8EaAhHQLSJyfvnbIt1fZQoaAZHwFZFp0OmR/5oB0t4aAhHQLSKtZnL7oB1fZQoaAZHQG8lTVc2R7toB00BBWgIR0C0kBjmfXf7dX2UKGgGR0Bvu7P2PDHfaAdN1QRoCEdAtJBuSyMUAXV9lChoBkdAcCXona37UGgHTaIEaAhHQLSQ8aM72ct1fZQoaAZHQG+xqmTC+DhoB03UBGgIR0C0kXnSro4ddX2UKGgGR0BvU6Phhpg1aAdN9gRoCEdAtJIgiLVFyHV9lChoBkdAb4wearmyPmgHTdcEaAhHQLSSmBZIQOF1fZQoaAZHQG8EK3mV7hNoB00FBWgIR0C0lGuHaewtdX2UKGgGR0Bv/54+r2g4aAdNrARoCEdAtJTibUgB93V9lChoBkfATjDXg9/z8WgHTQ8BaAhHQLSVh7Omixp1fZQoaAZHQHAGHhXKbKBoB027BGgIR0C0lmh55Z8sdX2UKGgGR0BV2a0x/NJOaAdNoQNoCEdAtJdJAiV0LnV9lChoBkdAcBALqUu+RGgHTZ4EaAhHQLSXfcOskpt1fZQoaAZHQDKecqe9SMtoB01/AmgIR0C0l5/99+gEdX2UKGgGR8BYw+ZgG8mKaAdLaWgIR0C0l6cfFJg9dX2UKGgGR0BwH2qXF98aaAdNoARoCEdAtJkjjjrAxnV9lChoBkdAcDk0PpY9xWgHTZAEaAhHQLSZp8Nx2jh1fZQoaAZHQG+MnlXA/LVoB03dBGgIR0C0n3K64Ds/dX2UKGgGR0Bvpku+RHPNaAdNyQRoCEdAtJ+AHTqjanV9lChoBkfATIyODJ2dNGgHTRkBaAhHQLSfufxtpEh1fZQoaAZHQHAiEWl/H5toB02OBGgIR0C0oIU/4ZdfdX2UKGgGR0BuLV8stkFwaAdNYQVoCEdAtKCFtqHoHXV9lChoBkdAW/T+yZ8a42gHTR4FaAhHQLShTQ+UyHp1fZQoaAZHQHAVP5xiobZoB02rBGgIR0C0oeJ9y926dX2UKGgGR0Bvnlwo9cKPaAdN5wRoCEdAtKHnLowEhnV9lChoBkdAcF6pnpSrHWgHTXIEaAhHQLSjx9JjDsN1fZQoaAZHQHARi/wiJO5oB02gBGgIR0C0pOlLamGedX2UKGgGR0BwBtTbWVeKaAdNogRoCEdAtKWbQ0GeMHV9lChoBkdAcDrQ9zOopGgHTYUEaAhHQLSnUqv/zat1fZQoaAZHQHACm0VrRBxoB02uBGgIR0C0p4tadMCcdX2UKGgGR0Bv9/xe9i+daAdNsARoCEdAtKfuLIgeR3V9lChoBkdAb5XmOEM9bGgHTdMEaAhHQLSoRDHOryV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 736, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}} |