Upload PPO BipedalWalker-v3 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-BipedalWalker-v3.zip +3 -0
- ppo-BipedalWalker-v3/_stable_baselines3_version +1 -0
- ppo-BipedalWalker-v3/data +105 -0
- ppo-BipedalWalker-v3/policy.optimizer.pth +3 -0
- ppo-BipedalWalker-v3/policy.pth +3 -0
- ppo-BipedalWalker-v3/pytorch_variables.pth +3 -0
- ppo-BipedalWalker-v3/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BipedalWalker-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BipedalWalker-v3
|
16 |
+
type: BipedalWalker-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -92.04 +/- 0.09
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **BipedalWalker-v3**
|
25 |
+
This is a trained model of a **PPO** agent playing **BipedalWalker-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f997703fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f997703feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f997703ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9977048040>", "_build": "<function ActorCriticPolicy._build at 0x7f99770480d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9977048160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99770481f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9977048280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9977048310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99770483a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9977048430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99770484c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713446623622180128, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEKuBz6/t509P4skvHgLwbvc7Iw/AAAAANJISD/spjC/AACAP80aE7/+/3+/ML38vgEAgD8AAIA/XCCKPu6xiz6ElZA+yWWZPp1bpz4Mx7w+IDXePvrMCj8OmD4/AACAP8u19D2kG9i8F72+uma287xebVW/gKzjOzgpRj5FoNc9AACAP/iqkD/Lrnw/+itLP8Puhr8AAIA/VZplPtk1aD5QVnA+1fx+Pr4Yiz405pw+HK+4PvgV5z6dLh8/AACAP/F6mz5ybkg7gkL9PSmZkLvERJE/AACgMio2lz7QFns+AACAP8GVW79W8Fm/4LpSvQEAgD8AAAAAvf6GPjWHiD5qTo0+ieuVPlmQoz54f7g+iSvZPnGnBz+JWDo/AACAP39mhz6bra48DMv3u2ThgjwxIYo/jGkdPx2xLD9sAYC/AAAAAH28Vb8AAKK17OzevggMgL8AAIA/zw+CPu+Jgz5xJIg++nCQPiWWnT5swbE+1DvRPlmyAj9IdzM/AACAP56LFT6G9hg8SAUyva1ewTwlp1K/8l8xPSS4Hj5dE/S9AACAPyxShT/t60m/cChiPxwAgD8AAIA/k29tPtwhcD5NiXg+49eDPozXjz59QKI+Dfy+PkyY7j4p0CM/AACAP8MdOj7XejG9X09uvMRbJ7zFgIU/gjOyPi5OaD9lTCa+AAAAACUcTr8AAAAAcP8MPR/xej4AAAAAEK+DPucthT4c14k+JD6SPkeNnz7z+LM+3NfTPqFTBD9xODU/AACAP+5hOz6cE9m7Ub0dPIM6Lzs3v1W/YEcFOzjk6b5bM3Q+AACAP0WOez96K609TAxuP5ligL0AAIA/uWptPvQccD45hHg+MdWDPpzUjz4tPaI+Jvi+PmyT7j7QzCM/AACAPzGzyD1aAwC8/L/RvK7OhzwKHE+/jgv3PdDq5L4/ftW+AAAAAO8MjD+Am8s8lvNoP6uqHbYAAIA/vdplPvx2aD67mXA+XER/PsM/iz44Ep0+6uK4Pvz55j4glR4/AACAPzzJYz7dLj88ts34u7TuTLyWtog/rx75PiL/aj8AAAAAAAAAAG3RMb8N6oM9IGzMvvtJfr8AAIA/S4yGPnYTiD6f1ow+cGyVPq4Foz4O47c+bXPYPnA0Bz8FqDk/AACAP6pFij7NDAk8ks+lvEJ7DLzue4g/Ansav7CHQj8BAIA/AAAAAD1KT78AAAAAmMTXvgEAgL8AAAAA/KmEPq0rhj7D3Yo+zlSTPk29oD7iT7U+hmvVPsdPBT+BDjc/AACAP0WMnjlz1C46y9idu5i8ubqHwCS/bhGAPyDAKL3t+38/AAAAALYokD8AtEC3tjtvPycUDrsAAAAA64x8PiZrfz7GLYQ+dDyMPqf/mD6clKw+aCTLPofI/T65PS4/AACAP1WERz/ss9M79qO6vW+Y0ru2TSg/sBZNPdR/6j5dAoA/AAAAAL3fS78mLHo+Eiozv3i9f78AAIA/f8yKPgZgjD6zSZE+9CSaPi4sqD5Osr0+DErfPvR5Cz+UhT8/AACAPyK8MT5A8dM82Vo/PMOtrjxfN5E/AAg8OejlTD/r/n+/AAAAAHO8Vb8AAMS2hPeNvucCgL8AAAAAdXx7PpdXfj4sn4M+KqWLPpdamD5s2qs+QEnKPr22/D6+gS0/AACAP7Eb0D74EzU8xBxQvatnBjuhX06/AAAotEj5jL4BAIC/AAAAAP8Hkz9om0w/kDfnvv//f78AAIA/paeJPtg3iz4oF5A+ud+YPlrJpj4QIrw+7XLdPqxTCj+EVT0/AACAP6p6LT6E+ti8ZOoqvTsACb0NplO/AACgMzCs9b79/3+/AAAAAPYCgT+u2Co/FFZvPwAAAAAAAIA/Hch1PqqSeD7dooA+Q3qIPuXllD5/9Kc+m7LFPkT79j50oSg/AACAPwJm9D42dk89Szoovp0Ij7yVmUy/BACAvyjbPb44mFQ/AAAAAECpUT9WNBM/Am/NPgAAgL8AAAAARkyMPijkjT5r25I+Kc+bPi39qT7Qvr8+cLPhPpv7DD8jl0E/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.6384000000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV5gUAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFqpIDoyKvWMAWyUSzqMAXSUR0A2NSvTw2ETdX2UKGgGR8BaVs2NvOyFaAdLO2gIR0A2OmVJL/S6dX2UKGgGR8BdFdfoicG1aAdLQGgIR0A2SZvDP4VRdX2UKGgGR8BZTwe7tiQUaAdLUGgIR0A2fLNOdoWYdX2UKGgGR8Bdbixu89OiaAdLUGgIR0A2fH31zySWdX2UKGgGR8BZasvmHP/raAdLVmgIR0A2j/7iyY5UdX2UKGgGR8BbxH+IdlunaAdLbWgIR0A20iADq4YrdX2UKGgGR8BanqiXY150aAdLcmgIR0A24QUYbbUPdX2UKGgGR8BdV+HWSU1RaAdLgGgIR0A3Db+tKZlWdX2UKGgGR8BdG1Up/gBLaAdLRmgIR0A3DY3eenQ6dX2UKGgGR8BfFXc1wYLtaAdLiWgIR0A3K1X/5tWNdX2UKGgGR8Bd4bCBPKuCaAdLUWgIR0A3N83++/QCdX2UKGgGR8BdZuuV5a/zaAdLRmgIR0A3VYCQtBfKdX2UKGgGR8BagQ2qDK5kaAdLYGgIR0A3b5qdpZfVdX2UKGgGR8BZkI1cdHUdaAdLNWgIR0A3gqynk1dgdX2UKGgGR8BbKEZJkGzKaAdLMGgIR0A3nSdOIqLCdX2UKGgGR8BZpe8Gs3hoaAdLYWgIR0A3n5ksjFAFdX2UKGgGR8BZroNZvDP4aAdLXWgIR0A37TuOS4e+dX2UKGgGR8BcEinxaxHHaAdLM2gIR0A4DsD4gzP9dX2UKGgGR8Bag5e/pMYeaAdLMWgIR0A4G3LFGXoldX2UKGgGR8BZkyv9tMwlaAdLUmgIR0A4Ll/6O5rhdX2UKGgGR8Bd+JMtbs4UaAdLaGgIR0A4ananJkoXdX2UKGgGR8BawiFXaJyiaAdLS2gIR0A4ijTrmhdudX2UKGgGR8BaPcqSX+l1aAdLO2gIR0A4pSf16E8JdX2UKGgGR8BZRCmZVn27aAdLkWgIR0A4ziUPhAGCdX2UKGgGR8BgW76P8yeqaAdLgWgIR0A44c6vJRwZdX2UKGgGR8Bc20YO2AoYaAdLRGgIR0A44mtQsPJ8dX2UKGgGR8BZIT1PFefJaAdLTWgIR0A5HB42S+xodX2UKGgGR8BZxlH8TBZZaAdLU2gIR0A5G29cry2AdX2UKGgGR8Ba64qG1x82aAdLNWgIR0A5SnSOR1YAdX2UKGgGR8BaHaPwNLDiaAdLSWgIR0A5acawUxmDdX2UKGgGR8BcRDtPYWcjaAdLNWgIR0A5bdnkDIRzdX2UKGgGR8BbX7l7tzCDaAdLWWgIR0A56NutOmBOdX2UKGgGR8Bd60RODaoNaAdLOmgIR0A59RqXWvr4dX2UKGgGR8BdAJWzWwu/aAdLbmgIR0A6XjKxLTQWdX2UKGgGR8BdWqMzdk8SaAdLY2gIR0A6hxcVxjridX2UKGgGR8BaZwtWdVebaAdLRmgIR0A6r0+C9RJmdX2UKGgGR8BZoZ1A7gbZaAdLUmgIR0A63jVx0dR0dX2UKGgGR8BZdUqUeMhpaAdLRGgIR0A7S5+pfhMrdX2UKGgGR8BeT9jbzshQaAdLWWgIR0A7XtWuHN5ddX2UKGgGR8BeYXv2GqPwaAdLRWgIR0A7dsxO+IuXdX2UKGgGR8BbKmViWmgraAdLQGgIR0A8Cupjtoi+dX2UKGgGR8BZgsfRu0kXaAdLOGgIR0A8INorWiDedX2UKGgGR8BZBgvUSZjQaAdLT2gIR0A8S5B1LamGdX2UKGgGR8BZfIpUgjhUaAdLRGgIR0A9CAVO9FnadX2UKGgGR8BY3S0F8ohIaAdLcmgIR0A9zguAZsKtdX2UKGgGR8BaqiPU8V59aAdLRmgIR0A97oZQ53kgdX2UKGgGR8Bcekl3Qla9aAdLPGgIR0A+v0ojOcDsdX2UKGgGR8BZVQ/LTx5LaAdLTGgIR0A+1LpRoAXEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]", "_shape": [24], "low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]", "high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[-1. -1. -1. -1.]", "high": "[1. 1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
|
ppo-BipedalWalker-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1915e5ba908721799d0064e53d05a6332382e6a2cd5b245132a0a79f1850c4a2
|
3 |
+
size 174799
|
ppo-BipedalWalker-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-BipedalWalker-v3/data
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f997703fe20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f997703feb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f997703ff40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9977048040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f99770480d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f9977048160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99770481f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9977048280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f9977048310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99770483a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9977048430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99770484c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1713446623622180128,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQYAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABgAAAAAAAEKuBz6/t509P4skvHgLwbvc7Iw/AAAAANJISD/spjC/AACAP80aE7/+/3+/ML38vgEAgD8AAIA/XCCKPu6xiz6ElZA+yWWZPp1bpz4Mx7w+IDXePvrMCj8OmD4/AACAP8u19D2kG9i8F72+uma287xebVW/gKzjOzgpRj5FoNc9AACAP/iqkD/Lrnw/+itLP8Puhr8AAIA/VZplPtk1aD5QVnA+1fx+Pr4Yiz405pw+HK+4PvgV5z6dLh8/AACAP/F6mz5ybkg7gkL9PSmZkLvERJE/AACgMio2lz7QFns+AACAP8GVW79W8Fm/4LpSvQEAgD8AAAAAvf6GPjWHiD5qTo0+ieuVPlmQoz54f7g+iSvZPnGnBz+JWDo/AACAP39mhz6bra48DMv3u2ThgjwxIYo/jGkdPx2xLD9sAYC/AAAAAH28Vb8AAKK17OzevggMgL8AAIA/zw+CPu+Jgz5xJIg++nCQPiWWnT5swbE+1DvRPlmyAj9IdzM/AACAP56LFT6G9hg8SAUyva1ewTwlp1K/8l8xPSS4Hj5dE/S9AACAPyxShT/t60m/cChiPxwAgD8AAIA/k29tPtwhcD5NiXg+49eDPozXjz59QKI+Dfy+PkyY7j4p0CM/AACAP8MdOj7XejG9X09uvMRbJ7zFgIU/gjOyPi5OaD9lTCa+AAAAACUcTr8AAAAAcP8MPR/xej4AAAAAEK+DPucthT4c14k+JD6SPkeNnz7z+LM+3NfTPqFTBD9xODU/AACAP+5hOz6cE9m7Ub0dPIM6Lzs3v1W/YEcFOzjk6b5bM3Q+AACAP0WOez96K609TAxuP5ligL0AAIA/uWptPvQccD45hHg+MdWDPpzUjz4tPaI+Jvi+PmyT7j7QzCM/AACAPzGzyD1aAwC8/L/RvK7OhzwKHE+/jgv3PdDq5L4/ftW+AAAAAO8MjD+Am8s8lvNoP6uqHbYAAIA/vdplPvx2aD67mXA+XER/PsM/iz44Ep0+6uK4Pvz55j4glR4/AACAPzzJYz7dLj88ts34u7TuTLyWtog/rx75PiL/aj8AAAAAAAAAAG3RMb8N6oM9IGzMvvtJfr8AAIA/S4yGPnYTiD6f1ow+cGyVPq4Foz4O47c+bXPYPnA0Bz8FqDk/AACAP6pFij7NDAk8ks+lvEJ7DLzue4g/Ansav7CHQj8BAIA/AAAAAD1KT78AAAAAmMTXvgEAgL8AAAAA/KmEPq0rhj7D3Yo+zlSTPk29oD7iT7U+hmvVPsdPBT+BDjc/AACAP0WMnjlz1C46y9idu5i8ubqHwCS/bhGAPyDAKL3t+38/AAAAALYokD8AtEC3tjtvPycUDrsAAAAA64x8PiZrfz7GLYQ+dDyMPqf/mD6clKw+aCTLPofI/T65PS4/AACAP1WERz/ss9M79qO6vW+Y0ru2TSg/sBZNPdR/6j5dAoA/AAAAAL3fS78mLHo+Eiozv3i9f78AAIA/f8yKPgZgjD6zSZE+9CSaPi4sqD5Osr0+DErfPvR5Cz+UhT8/AACAPyK8MT5A8dM82Vo/PMOtrjxfN5E/AAg8OejlTD/r/n+/AAAAAHO8Vb8AAMS2hPeNvucCgL8AAAAAdXx7PpdXfj4sn4M+KqWLPpdamD5s2qs+QEnKPr22/D6+gS0/AACAP7Eb0D74EzU8xBxQvatnBjuhX06/AAAotEj5jL4BAIC/AAAAAP8Hkz9om0w/kDfnvv//f78AAIA/paeJPtg3iz4oF5A+ud+YPlrJpj4QIrw+7XLdPqxTCj+EVT0/AACAP6p6LT6E+ti8ZOoqvTsACb0NplO/AACgMzCs9b79/3+/AAAAAPYCgT+u2Co/FFZvPwAAAAAAAIA/Hch1PqqSeD7dooA+Q3qIPuXllD5/9Kc+m7LFPkT79j50oSg/AACAPwJm9D42dk89Szoovp0Ij7yVmUy/BACAvyjbPb44mFQ/AAAAAECpUT9WNBM/Am/NPgAAgL8AAAAARkyMPijkjT5r25I+Kc+bPi39qT7Qvr8+cLPhPpv7DD8jl0E/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLEEsYhpSMAUOUdJRSlC4="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.6384000000000001,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV5gUAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFqpIDoyKvWMAWyUSzqMAXSUR0A2NSvTw2ETdX2UKGgGR8BaVs2NvOyFaAdLO2gIR0A2OmVJL/S6dX2UKGgGR8BdFdfoicG1aAdLQGgIR0A2SZvDP4VRdX2UKGgGR8BZTwe7tiQUaAdLUGgIR0A2fLNOdoWYdX2UKGgGR8Bdbixu89OiaAdLUGgIR0A2fH31zySWdX2UKGgGR8BZasvmHP/raAdLVmgIR0A2j/7iyY5UdX2UKGgGR8BbxH+IdlunaAdLbWgIR0A20iADq4YrdX2UKGgGR8BanqiXY150aAdLcmgIR0A24QUYbbUPdX2UKGgGR8BdV+HWSU1RaAdLgGgIR0A3Db+tKZlWdX2UKGgGR8BdG1Up/gBLaAdLRmgIR0A3DY3eenQ6dX2UKGgGR8BfFXc1wYLtaAdLiWgIR0A3K1X/5tWNdX2UKGgGR8Bd4bCBPKuCaAdLUWgIR0A3N83++/QCdX2UKGgGR8BdZuuV5a/zaAdLRmgIR0A3VYCQtBfKdX2UKGgGR8BagQ2qDK5kaAdLYGgIR0A3b5qdpZfVdX2UKGgGR8BZkI1cdHUdaAdLNWgIR0A3gqynk1dgdX2UKGgGR8BbKEZJkGzKaAdLMGgIR0A3nSdOIqLCdX2UKGgGR8BZpe8Gs3hoaAdLYWgIR0A3n5ksjFAFdX2UKGgGR8BZroNZvDP4aAdLXWgIR0A37TuOS4e+dX2UKGgGR8BcEinxaxHHaAdLM2gIR0A4DsD4gzP9dX2UKGgGR8Bag5e/pMYeaAdLMWgIR0A4G3LFGXoldX2UKGgGR8BZkyv9tMwlaAdLUmgIR0A4Ll/6O5rhdX2UKGgGR8Bd+JMtbs4UaAdLaGgIR0A4ananJkoXdX2UKGgGR8BawiFXaJyiaAdLS2gIR0A4ijTrmhdudX2UKGgGR8BaPcqSX+l1aAdLO2gIR0A4pSf16E8JdX2UKGgGR8BZRCmZVn27aAdLkWgIR0A4ziUPhAGCdX2UKGgGR8BgW76P8yeqaAdLgWgIR0A44c6vJRwZdX2UKGgGR8Bc20YO2AoYaAdLRGgIR0A44mtQsPJ8dX2UKGgGR8BZIT1PFefJaAdLTWgIR0A5HB42S+xodX2UKGgGR8BZxlH8TBZZaAdLU2gIR0A5G29cry2AdX2UKGgGR8Ba64qG1x82aAdLNWgIR0A5SnSOR1YAdX2UKGgGR8BaHaPwNLDiaAdLSWgIR0A5acawUxmDdX2UKGgGR8BcRDtPYWcjaAdLNWgIR0A5bdnkDIRzdX2UKGgGR8BbX7l7tzCDaAdLWWgIR0A56NutOmBOdX2UKGgGR8Bd60RODaoNaAdLOmgIR0A59RqXWvr4dX2UKGgGR8BdAJWzWwu/aAdLbmgIR0A6XjKxLTQWdX2UKGgGR8BdWqMzdk8SaAdLY2gIR0A6hxcVxjridX2UKGgGR8BaZwtWdVebaAdLRmgIR0A6r0+C9RJmdX2UKGgGR8BZoZ1A7gbZaAdLUmgIR0A63jVx0dR0dX2UKGgGR8BZdUqUeMhpaAdLRGgIR0A7S5+pfhMrdX2UKGgGR8BeT9jbzshQaAdLWWgIR0A7XtWuHN5ddX2UKGgGR8BeYXv2GqPwaAdLRWgIR0A7dsxO+IuXdX2UKGgGR8BbKmViWmgraAdLQGgIR0A8Cupjtoi+dX2UKGgGR8BZgsfRu0kXaAdLOGgIR0A8INorWiDedX2UKGgGR8BZBgvUSZjQaAdLT2gIR0A8S5B1LamGdX2UKGgGR8BZfIpUgjhUaAdLRGgIR0A9CAVO9FnadX2UKGgGR8BY3S0F8ohIaAdLcmgIR0A9zguAZsKtdX2UKGgGR8BaqiPU8V59aAdLRmgIR0A97oZQ53kgdX2UKGgGR8Bcekl3Qla9aAdLPGgIR0A+v0ojOcDsdX2UKGgGR8BZVQ/LTx5LaAdLTGgIR0A+1LpRoAXEdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVTAQAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWGAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLGIWUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolhgAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBlGgVSxiFlGgZdJRSlIwGX3NoYXBllEsYhZSMA2xvd5RoESiWYAAAAAAAAADbD0nAAACgwAAAoMAAAKDA2w9JwAAAoMDbD0nAAACgwAAAAIDbD0nAAACgwNsPScAAAKDAAAAAgAAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAvwAAgL+UaAtLGIWUaBl0lFKUjARoaWdolGgRKJZgAAAAAAAAANsPSUAAAKBAAACgQAAAoEDbD0lAAACgQNsPSUAAAKBAAACgQNsPSUAAAKBA2w9JQAAAoEAAAKBAAACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sYhZRoGXSUUpSMCGxvd19yZXBylIz+Wy0zLjE0MTU5MjcgLTUuICAgICAgICAtNS4gICAgICAgIC01LiAgICAgICAgLTMuMTQxNTkyNyAtNS4KIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMC4gICAgICAgIC0zLjE0MTU5MjcgLTUuICAgICAgICAtMy4xNDE1OTI3CiAtNS4gICAgICAgIC0wLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuCiAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgICAtMS4gICAgICAgIC0xLiAgICAgICAgLTEuICAgICAgIF2UjAloaWdoX3JlcHKUjOZbMy4xNDE1OTI3IDUuICAgICAgICA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3CiA1LiAgICAgICAgNS4gICAgICAgIDMuMTQxNTkyNyA1LiAgICAgICAgMy4xNDE1OTI3IDUuICAgICAgICA1LgogMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgIDEuICAgICAgICAxLiAgICAgICAgMS4KIDEuICAgICAgICAxLiAgICAgICAgMS4gICAgICAgXZSMCl9ucF9yYW5kb22UTnViLg==",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True True True True True\n True True True True True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
24
|
63 |
+
],
|
64 |
+
"low": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
65 |
+
"high": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
66 |
+
"low_repr": "[-3.1415927 -5. -5. -5. -3.1415927 -5.\n -3.1415927 -5. -0. -3.1415927 -5. -3.1415927\n -5. -0. -1. -1. -1. -1.\n -1. -1. -1. -1. -1. -1. ]",
|
67 |
+
"high_repr": "[3.1415927 5. 5. 5. 3.1415927 5. 3.1415927\n 5. 5. 3.1415927 5. 3.1415927 5. 5.\n 1. 1. 1. 1. 1. 1. 1.\n 1. 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
72 |
+
":serialized:": "gAWVpwEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAgL8AAIC/AACAvwAAgL+UaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMBC0xLjCUjAloaWdoX3JlcHKUjAMxLjCUjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"dtype": "float32",
|
74 |
+
"bounded_below": "[ True True True True]",
|
75 |
+
"bounded_above": "[ True True True True]",
|
76 |
+
"_shape": [
|
77 |
+
4
|
78 |
+
],
|
79 |
+
"low": "[-1. -1. -1. -1.]",
|
80 |
+
"high": "[1. 1. 1. 1.]",
|
81 |
+
"low_repr": "-1.0",
|
82 |
+
"high_repr": "1.0",
|
83 |
+
"_np_random": null
|
84 |
+
},
|
85 |
+
"n_envs": 16,
|
86 |
+
"n_steps": 1024,
|
87 |
+
"gamma": 0.999,
|
88 |
+
"gae_lambda": 0.98,
|
89 |
+
"ent_coef": 0.01,
|
90 |
+
"vf_coef": 0.5,
|
91 |
+
"max_grad_norm": 0.5,
|
92 |
+
"batch_size": 64,
|
93 |
+
"n_epochs": 4,
|
94 |
+
"clip_range": {
|
95 |
+
":type:": "<class 'function'>",
|
96 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
97 |
+
},
|
98 |
+
"clip_range_vf": null,
|
99 |
+
"normalize_advantage": true,
|
100 |
+
"target_kl": null,
|
101 |
+
"lr_schedule": {
|
102 |
+
":type:": "<class 'function'>",
|
103 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
104 |
+
}
|
105 |
+
}
|
ppo-BipedalWalker-v3/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33ea64de5c26b468fb0f9dfc88a48db15f49d18f7c79eb3f4f3afb6ba2f07885
|
3 |
+
size 105441
|
ppo-BipedalWalker-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:38489223175947af1634079deb11fc8cdb9188f31814eaa2abd75ca5ddfe6c5a
|
3 |
+
size 52271
|
ppo-BipedalWalker-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-BipedalWalker-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.2.1+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
replay.mp4
ADDED
Binary file (292 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -92.03958271462871, "std_reward": 0.09135166367737325, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-18T13:24:55.014812"}
|