chirbard commited on
Commit
2747ef8
·
verified ·
1 Parent(s): 0b26456

Upload PPO MountainCar-v0 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - MountainCar-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: MountainCar-v0
16
+ type: MountainCar-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -200.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **MountainCar-v0**
25
+ This is a trained model of a **PPO** agent playing **MountainCar-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f997703fe20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f997703feb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f997703ff40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9977048040>", "_build": "<function ActorCriticPolicy._build at 0x7f99770480d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f9977048160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99770481f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9977048280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f9977048310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99770483a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9977048430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99770484c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 1000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713441440168409331, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAL7zB7/DSmc63GcEv5UuLTqkWAK/xMzdOVSu7r5F7CW7Ej0Gv58cWjq13ti+Cze2O1g9Ar+r2P66a+Uhv1+zRbw5Vhm/IioPvNjP+L6oZck7ZwIVvxro4Lo4hRi/ecEDvE9sGr/gfAW8Riwiv1l0qrtothC/THgRO2gnCr+lmfS6lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -15.384, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWViAkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0A/WpZwGW2PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WoE0SAYpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WmzByjpLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wlk6Lfk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WkVvddmhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WjI7vG6xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wh5gPVd5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WguRLbpNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wfh/Aj6fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WeWv8qFzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WcVxjriVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wa7EpAlfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WZcLSeAedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WYKIBRyfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WW4EwFkhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WVlf7aZhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0P6KtPpIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0PMB6rvLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0OinHeabdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0N7KJVKgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0NTcZccEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0MsxwhnrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0ME7nxJ/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0LfLs8gZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0K4pc5bRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0KSxJNCadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0JSBK+SKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0IlD4QBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0H1vl2eQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0HMlkYoBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0Gjbi6xxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0F54W1twdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8PY4ACGOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Orp7kXDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8OCoS+QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8NbcGkeqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8M0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8MNlRP43dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8LmITGo8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8LApKBd2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8KaPS2H+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8J0nw5NodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Iz3yqdZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8IGpuMuOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8HXNC7btdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8GuLaVUudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8GFJxvNvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Fb3XZoPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEvYvnKW+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEurhisnzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEuCXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEta6jFhodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEszdk8RudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEsM7U5MldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDErlV94NadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEq/20zCUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEqZlWfbsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEpz1bqyGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEoF3Y+SsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEnWjGkvcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEmtZFG5MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEmEPDpC8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEla8pTdddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMMxfv4M4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMMEA5q/NdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMLbHp8nedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMKz7di2EdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMKMWGh24dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMJmEoOQRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMI+nqFAWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMIZAIIGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMHyd4FA3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMHMt9QXRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMGL9/BnBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMFev6j33dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMEvboKUndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMEGZ/kNndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMDdYW+GodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMC0F8ohIdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}
ppo-MountainCar-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fcfa4adf0b59b7ccece346e214b438bae2b77c11fec19e679d905c7a42057f4a
3
+ size 135989
ppo-MountainCar-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-MountainCar-v0/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f997703fe20>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f997703feb0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f997703ff40>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9977048040>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f99770480d0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f9977048160>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f99770481f0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9977048280>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f9977048310>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f99770483a0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f9977048430>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f99770484c0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 16384,
25
+ "_total_timesteps": 1000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1713441440168409331,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAL7zB7/DSmc63GcEv5UuLTqkWAK/xMzdOVSu7r5F7CW7Ej0Gv58cWjq13ti+Cze2O1g9Ar+r2P66a+Uhv1+zRbw5Vhm/IioPvNjP+L6oZck7ZwIVvxro4Lo4hRi/ecEDvE9sGr/gfAW8Riwiv1l0qrtothC/THgRO2gnCr+lmfS6lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -15.384,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWViAkAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0A/WpZwGW2PdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WoE0SAYpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WmzByjpLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wlk6Lfk4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WkVvddmhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WjI7vG6xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wh5gPVd5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WguRLbpNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wfh/Aj6fdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WeWv8qFzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WcVxjriVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/Wa7EpAlfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WZcLSeAedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WYKIBRyfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WW4EwFkhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0A/WVlf7aZhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0P6KtPpIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0PMB6rvLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0OinHeabdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0N7KJVKgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0NTcZccEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0MsxwhnrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0ME7nxJ/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0LfLs8gZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0K4pc5bRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0KSxJNCadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0JSBK+SKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0IlD4QBgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0H1vl2eQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0HMlkYoBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0Gjbi6xxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BA0F54W1twdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8PY4ACGOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Orp7kXDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8OCoS+QEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8NbcGkeqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8M0HhS9/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8MNlRP43dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8LmITGo8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8LApKBd2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8KaPS2H+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8J0nw5NodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Iz3yqdZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8IGpuMuOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8HXNC7btdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8GuLaVUudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8GFJxvNvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BB8Fb3XZoPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEvYvnKW+dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEurhisnzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEuCXhOxjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEta6jFhodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEszdk8RudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEsM7U5MldX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDErlV94NadX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEq/20zCUdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEqZlWfbsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEpz1bqyGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEozFdcB2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEoF3Y+SsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEnWjGkvcdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEmtZFG5MdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEmEPDpC8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BDEla8pTdddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMMxfv4M4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMMEA5q/NdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMLbHp8nedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMKz7di2EdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMKMWGh24dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMJmEoOQRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMI+nqFAWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMIZAIIGAdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMHyd4FA3dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMHMt9QXRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMGL9/BnBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMFev6j33dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMEvboKUndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMEGZ/kNndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMDdYW+GodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BEMC0F8ohIdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 4,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True]",
60
+ "bounded_above": "[ True True]",
61
+ "_shape": [
62
+ 2
63
+ ],
64
+ "low": "[-1.2 -0.07]",
65
+ "high": "[0.6 0.07]",
66
+ "low_repr": "[-1.2 -0.07]",
67
+ "high_repr": "[0.6 0.07]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "3",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-MountainCar-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e77f3640ddbaafa42f12e9baa788622e5cfe04ce909fc0d8854cd86b5515dda
3
+ size 81706
ppo-MountainCar-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c5e5e1b8c5176d1401bcfe25383d34511c60d2ff457d37e90ef9c2463c8d3d2b
3
+ size 40434
ppo-MountainCar-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
ppo-MountainCar-v0/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.2.1+cu121
5
+ - GPU Enabled: True
6
+ - Numpy: 1.25.2
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.26.2
replay.mp4 ADDED
Binary file (182 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-04-18T11:59:07.377178"}