{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f9977045180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1713441624128354868, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAMmfub4Ztbm6/pcav0rUTDoIfee+ZdobPAxHAL/RxYQ7xDjQvsTFyLtqXzq/lAY3u5MJkr4+hUM7sK3LviuDGDy6kw6/eyNZOwMt+r5/yTA6c+YUv3a3gLxiywK/kmxXOslvC7/R7Ka7G6gev2iVjToRrye/mnTYu22GE79iH4O7lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwGkAAAAAAACMAWyUS8iMAXSUR0Bxm9e3QUpNdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxm9Z8rqdIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxm9VFQVKxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxm9QDV6NVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxwAT+NtIkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxwAOUdJardX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxwAJMQEpzdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0BxwAERradudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv//VAiV0dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/6hxo7FdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/1kDp1SdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/w3HaN/dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/sF+uvEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/nZCfHxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/fUF0PpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/ZrYXfqdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/Tvy9VWdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/OmixmkdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/JdSl3ydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Bxv/ER8MNMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ+I3zcyndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ+DFqBVddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9+BpYcOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ95LRKHxdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ90T101ZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9vjwQUYdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9qsU7CBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9mBe5WjdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9hRZU1idX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9clgMMJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9UfgaWHdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9O2y9mIdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9I9TxXodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ9D1GsmwdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ8+t8uzydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByJ85jpcHGdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLk53kgfVdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLk0EX+ERdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLku7HyVfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkp/gBLgdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLklC1JDmdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkgNgBtDdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkbQ1JlKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkWk8A7xdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkR02cawdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkNLDhtMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLkFINEw4dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLj/ffoA5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLj5mAbyZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLj0e2d/bdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLjvYvnKXdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByLjqQiiZfdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOEYWLxZudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOEScslLOdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOENRWLgodX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOEI0IkZ8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOED+zdDZdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOD/NqxkedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOD6SDAaedX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByOD1lGwzMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODwx33YddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODsE7nxKdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODj+717IdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODeWOZLJdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODYbsF+vdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODTVlPJrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODOObRWtdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByODJEH+qBdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVuGBWgezdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVuAQQL/kdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVt7HAAQydX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVt2MbWEsdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtxR2r4ndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtschkiEdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtnezlcRdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtiw0O3EdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtd+ocaPdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtZSvTw2dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtRNyo4udX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtLkCFK1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtFocrAhdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVtAeJYT1dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVs7V8Ti9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0ByVs2LpA2RdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1nZkCmudX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1hjOLR8dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1cY64lQdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1XeWOZLdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1SiudPMdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1Nucc2jdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1IwudwvdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd1EDyOJddX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0/OdGy5dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd06hg3LndX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0yad+XrdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0sunMt9dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0mzByjpdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0hpxm03dX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0cghbGFdX2UKGgGR8BpAAAAAAAAaAdLyGgIR0Byd0XWOIZZdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 32, "observation_space": {":type:": "", ":serialized:": "gAWVpAEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAgAAAAAAAAABAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksChZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWAgAAAAAAAAABAZRoFUsChZRoGXSUUpSMBl9zaGFwZZRLAoWUjANsb3eUaBEolggAAAAAAAAAmpmZvylcj72UaAtLAoWUaBl0lFKUjARoaWdolGgRKJYIAAAAAAAAAJqZGT8pXI89lGgLSwKFlGgZdJRSlIwIbG93X3JlcHKUjA1bLTEuMiAgLTAuMDddlIwJaGlnaF9yZXBylIwLWzAuNiAgMC4wN12UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "low_repr": "[-1.2 -0.07]", "high_repr": "[0.6 0.07]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIAwAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "3", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.133.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 # 1 SMP Thu Oct 5 21:02:42 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.26.2"}}