Upload ppo_tetris_v5.ipynb
Browse files- ppo_tetris_v5.ipynb +405 -0
ppo_tetris_v5.ipynb
ADDED
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"source": [
|
6 |
+
"### The environment 🎮\n",
|
7 |
+
"\n",
|
8 |
+
"- https://gymnasium.farama.org/environments/classic_control/mountain_car/\n",
|
9 |
+
"\n",
|
10 |
+
"### The library used 📚\n",
|
11 |
+
"\n",
|
12 |
+
"- [Stable-Baselines3](https://stable-baselines3.readthedocs.io/en/master/)"
|
13 |
+
],
|
14 |
+
"metadata": {
|
15 |
+
"id": "x7oR6R-ZIbeS"
|
16 |
+
}
|
17 |
+
},
|
18 |
+
{
|
19 |
+
"cell_type": "markdown",
|
20 |
+
"metadata": {
|
21 |
+
"id": "jeDAH0h0EBiG"
|
22 |
+
},
|
23 |
+
"source": [
|
24 |
+
"## Install dependencies and create a virtual screen 🔽\n"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"source": [
|
30 |
+
"!apt install swig cmake"
|
31 |
+
],
|
32 |
+
"metadata": {
|
33 |
+
"id": "yQIGLPDkGhgG"
|
34 |
+
},
|
35 |
+
"execution_count": null,
|
36 |
+
"outputs": []
|
37 |
+
},
|
38 |
+
{
|
39 |
+
"cell_type": "code",
|
40 |
+
"execution_count": null,
|
41 |
+
"metadata": {
|
42 |
+
"id": "9XaULfDZDvrC"
|
43 |
+
},
|
44 |
+
"outputs": [],
|
45 |
+
"source": [
|
46 |
+
"!pip install -r https://raw.githubusercontent.com/huggingface/deep-rl-class/main/notebooks/unit1/requirements-unit1.txt"
|
47 |
+
]
|
48 |
+
},
|
49 |
+
{
|
50 |
+
"cell_type": "markdown",
|
51 |
+
"source": [
|
52 |
+
"During the notebook, we'll need to generate a replay video. To do so, with colab, **we need to have a virtual screen to be able to render the environment** (and thus record the frames).\n",
|
53 |
+
"\n",
|
54 |
+
"Hence the following cell will install virtual screen libraries and create and run a virtual screen 🖥"
|
55 |
+
],
|
56 |
+
"metadata": {
|
57 |
+
"id": "BEKeXQJsQCYm"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"cell_type": "code",
|
62 |
+
"source": [
|
63 |
+
"!sudo apt-get update\n",
|
64 |
+
"!sudo apt-get install -y python3-opengl\n",
|
65 |
+
"!apt install ffmpeg\n",
|
66 |
+
"!apt install xvfb\n",
|
67 |
+
"!pip3 install pyvirtualdisplay"
|
68 |
+
],
|
69 |
+
"metadata": {
|
70 |
+
"id": "j5f2cGkdP-mb"
|
71 |
+
},
|
72 |
+
"execution_count": null,
|
73 |
+
"outputs": []
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"cell_type": "markdown",
|
77 |
+
"source": [
|
78 |
+
"To make sure the new installed libraries are used, **sometimes it's required to restart the notebook runtime**. The next cell will force the **runtime to crash, so you'll need to connect again and run the code starting from here**. Thanks to this trick, **we will be able to run our virtual screen.**"
|
79 |
+
],
|
80 |
+
"metadata": {
|
81 |
+
"id": "TCwBTAwAW9JJ"
|
82 |
+
}
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"source": [
|
87 |
+
"import os\n",
|
88 |
+
"os.kill(os.getpid(), 9)"
|
89 |
+
],
|
90 |
+
"metadata": {
|
91 |
+
"id": "cYvkbef7XEMi"
|
92 |
+
},
|
93 |
+
"execution_count": null,
|
94 |
+
"outputs": []
|
95 |
+
},
|
96 |
+
{
|
97 |
+
"cell_type": "code",
|
98 |
+
"source": [
|
99 |
+
"# Virtual display\n",
|
100 |
+
"from pyvirtualdisplay import Display\n",
|
101 |
+
"\n",
|
102 |
+
"virtual_display = Display(visible=0, size=(1400, 900))\n",
|
103 |
+
"virtual_display.start()"
|
104 |
+
],
|
105 |
+
"metadata": {
|
106 |
+
"id": "BE5JWP5rQIKf"
|
107 |
+
},
|
108 |
+
"execution_count": null,
|
109 |
+
"outputs": []
|
110 |
+
},
|
111 |
+
{
|
112 |
+
"cell_type": "markdown",
|
113 |
+
"metadata": {
|
114 |
+
"id": "wrgpVFqyENVf"
|
115 |
+
},
|
116 |
+
"source": [
|
117 |
+
"## Import the packages 📦\n",
|
118 |
+
"\n",
|
119 |
+
"\n"
|
120 |
+
]
|
121 |
+
},
|
122 |
+
{
|
123 |
+
"cell_type": "code",
|
124 |
+
"execution_count": null,
|
125 |
+
"metadata": {
|
126 |
+
"id": "cygWLPGsEQ0m"
|
127 |
+
},
|
128 |
+
"outputs": [],
|
129 |
+
"source": [
|
130 |
+
"import gymnasium\n",
|
131 |
+
"\n",
|
132 |
+
"from huggingface_sb3 import load_from_hub, package_to_hub\n",
|
133 |
+
"from huggingface_hub import notebook_login # To log to our Hugging Face account to be able to upload models to the Hub.\n",
|
134 |
+
"\n",
|
135 |
+
"from stable_baselines3 import PPO\n",
|
136 |
+
"from stable_baselines3.common.env_util import make_vec_env\n",
|
137 |
+
"from stable_baselines3.common.evaluation import evaluate_policy\n",
|
138 |
+
"from stable_baselines3.common.monitor import Monitor"
|
139 |
+
]
|
140 |
+
},
|
141 |
+
{
|
142 |
+
"cell_type": "code",
|
143 |
+
"execution_count": null,
|
144 |
+
"metadata": {
|
145 |
+
"id": "w7vOFlpA_ONz"
|
146 |
+
},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"import gymnasium as gym\n",
|
150 |
+
"\n",
|
151 |
+
"# First, we create our environment\n",
|
152 |
+
"env = gym.make(\"ALE/Tetris-v5\")\n",
|
153 |
+
"\n",
|
154 |
+
"# Then we reset this environment\n",
|
155 |
+
"observation, info = env.reset()\n",
|
156 |
+
"\n",
|
157 |
+
"for _ in range(20):\n",
|
158 |
+
" # Take a random action\n",
|
159 |
+
" action = env.action_space.sample()\n",
|
160 |
+
" print(\"Action taken:\", action)\n",
|
161 |
+
"\n",
|
162 |
+
" # Do this action in the environment and get\n",
|
163 |
+
" # next_state, reward, terminated, truncated and info\n",
|
164 |
+
" observation, reward, terminated, truncated, info = env.step(action)\n",
|
165 |
+
"\n",
|
166 |
+
" # If the game is terminated (in our case we land, crashed) or truncated (timeout)\n",
|
167 |
+
" if terminated or truncated:\n",
|
168 |
+
" # Reset the environment\n",
|
169 |
+
" print(\"Environment is reset\")\n",
|
170 |
+
" observation, info = env.reset()\n",
|
171 |
+
"\n",
|
172 |
+
"env.close()"
|
173 |
+
]
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"cell_type": "markdown",
|
177 |
+
"metadata": {
|
178 |
+
"id": "poLBgRocF9aT"
|
179 |
+
},
|
180 |
+
"source": [
|
181 |
+
"Let's see what the Environment looks like:\n"
|
182 |
+
]
|
183 |
+
},
|
184 |
+
{
|
185 |
+
"cell_type": "code",
|
186 |
+
"execution_count": null,
|
187 |
+
"metadata": {
|
188 |
+
"id": "ZNPG0g_UGCfh"
|
189 |
+
},
|
190 |
+
"outputs": [],
|
191 |
+
"source": [
|
192 |
+
"# We create our environment with gym.make(\"<name_of_the_environment>\")\n",
|
193 |
+
"env = gym.make(\"ALE/Tetris-v5\")\n",
|
194 |
+
"env.reset()\n",
|
195 |
+
"print(\"_____OBSERVATION SPACE_____ \\n\")\n",
|
196 |
+
"print(\"Observation Space Shape\", env.observation_space.shape)\n",
|
197 |
+
"print(\"Sample observation\", env.observation_space.sample()) # Get a random observation"
|
198 |
+
]
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"cell_type": "code",
|
202 |
+
"execution_count": null,
|
203 |
+
"metadata": {
|
204 |
+
"id": "We5WqOBGLoSm"
|
205 |
+
},
|
206 |
+
"outputs": [],
|
207 |
+
"source": [
|
208 |
+
"print(\"\\n _____ACTION SPACE_____ \\n\")\n",
|
209 |
+
"print(\"Action Space Shape\", env.action_space.n)\n",
|
210 |
+
"print(\"Action Space Sample\", env.action_space.sample()) # Take a random action"
|
211 |
+
]
|
212 |
+
},
|
213 |
+
{
|
214 |
+
"cell_type": "markdown",
|
215 |
+
"metadata": {
|
216 |
+
"id": "dFD9RAFjG8aq"
|
217 |
+
},
|
218 |
+
"source": [
|
219 |
+
"#### Vectorized Environment\n",
|
220 |
+
"\n",
|
221 |
+
"- We create a vectorized environment (a method for stacking multiple independent environments into a single environment) of 16 environments, this way, **we'll have more diverse experiences during the training.**"
|
222 |
+
]
|
223 |
+
},
|
224 |
+
{
|
225 |
+
"cell_type": "code",
|
226 |
+
"execution_count": null,
|
227 |
+
"metadata": {
|
228 |
+
"id": "99hqQ_etEy1N"
|
229 |
+
},
|
230 |
+
"outputs": [],
|
231 |
+
"source": [
|
232 |
+
"# Create the environment\n",
|
233 |
+
"env = make_vec_env('ALE/Tetris-v5', n_envs=16)"
|
234 |
+
]
|
235 |
+
},
|
236 |
+
{
|
237 |
+
"cell_type": "markdown",
|
238 |
+
"metadata": {
|
239 |
+
"id": "QAN7B0_HCVZC"
|
240 |
+
},
|
241 |
+
"source": [
|
242 |
+
"#### Model and hyperparameters"
|
243 |
+
]
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"cell_type": "code",
|
247 |
+
"execution_count": null,
|
248 |
+
"metadata": {
|
249 |
+
"id": "543OHYDfcjK4"
|
250 |
+
},
|
251 |
+
"outputs": [],
|
252 |
+
"source": [
|
253 |
+
"model = PPO(\n",
|
254 |
+
" policy = 'MlpPolicy',\n",
|
255 |
+
" env = env,\n",
|
256 |
+
" n_steps = 1024,\n",
|
257 |
+
" batch_size = 64,\n",
|
258 |
+
" n_epochs = 4,\n",
|
259 |
+
" gamma = 0.99,\n",
|
260 |
+
" gae_lambda = 0.98,\n",
|
261 |
+
" ent_coef = 0.01,\n",
|
262 |
+
" verbose=1)"
|
263 |
+
]
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"cell_type": "markdown",
|
267 |
+
"metadata": {
|
268 |
+
"id": "ClJJk88yoBUi"
|
269 |
+
},
|
270 |
+
"source": [
|
271 |
+
"## Train the PPO agent 🏃\n"
|
272 |
+
]
|
273 |
+
},
|
274 |
+
{
|
275 |
+
"cell_type": "code",
|
276 |
+
"execution_count": null,
|
277 |
+
"metadata": {
|
278 |
+
"id": "poBCy9u_csyR"
|
279 |
+
},
|
280 |
+
"outputs": [],
|
281 |
+
"source": [
|
282 |
+
"model.learn(total_timesteps=100000)\n",
|
283 |
+
"# Save the model\n",
|
284 |
+
"model_name = \"Tetris-v5\"\n",
|
285 |
+
"model.save(model_name)"
|
286 |
+
]
|
287 |
+
},
|
288 |
+
{
|
289 |
+
"cell_type": "markdown",
|
290 |
+
"metadata": {
|
291 |
+
"id": "BqPKw3jt_pG5"
|
292 |
+
},
|
293 |
+
"source": [
|
294 |
+
"#### Evaluate"
|
295 |
+
]
|
296 |
+
},
|
297 |
+
{
|
298 |
+
"cell_type": "code",
|
299 |
+
"execution_count": null,
|
300 |
+
"metadata": {
|
301 |
+
"id": "zpz8kHlt_a_m"
|
302 |
+
},
|
303 |
+
"outputs": [],
|
304 |
+
"source": [
|
305 |
+
"#@title\n",
|
306 |
+
"eval_env = Monitor(gym.make(\"ALE/Tetris-v5\"))\n",
|
307 |
+
"mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True)\n",
|
308 |
+
"print(f\"mean_reward={mean_reward:.2f} +/- {std_reward}\")"
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "markdown",
|
313 |
+
"source": [
|
314 |
+
"#### Upload to hub"
|
315 |
+
],
|
316 |
+
"metadata": {
|
317 |
+
"id": "7YFBLHXDPuH5"
|
318 |
+
}
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"cell_type": "code",
|
322 |
+
"execution_count": null,
|
323 |
+
"metadata": {
|
324 |
+
"id": "GZiFBBlzxzxY"
|
325 |
+
},
|
326 |
+
"outputs": [],
|
327 |
+
"source": [
|
328 |
+
"notebook_login()\n",
|
329 |
+
"!git config --global credential.helper store"
|
330 |
+
]
|
331 |
+
},
|
332 |
+
{
|
333 |
+
"cell_type": "code",
|
334 |
+
"source": [
|
335 |
+
"import gymnasium as gym\n",
|
336 |
+
"\n",
|
337 |
+
"from stable_baselines3 import PPO\n",
|
338 |
+
"from stable_baselines3.common.vec_env import DummyVecEnv\n",
|
339 |
+
"from stable_baselines3.common.env_util import make_vec_env\n",
|
340 |
+
"\n",
|
341 |
+
"from huggingface_sb3 import package_to_hub\n",
|
342 |
+
"\n",
|
343 |
+
"# PLACE the variables you've just defined two cells above\n",
|
344 |
+
"# Define the name of the environment\n",
|
345 |
+
"env_id = \"ALE/Tetris-v5\"\n",
|
346 |
+
"\n",
|
347 |
+
"# TODO: Define the model architecture we used\n",
|
348 |
+
"model_architecture = \"PPO\"\n",
|
349 |
+
"\n",
|
350 |
+
"## Define a repo_id\n",
|
351 |
+
"## repo_id is the id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}\n",
|
352 |
+
"## CHANGE WITH YOUR REPO ID\n",
|
353 |
+
"repo_id = \"chirbard/ppo-Tetris-v5\" # Change with your repo id, you can't push with mine 😄\n",
|
354 |
+
"\n",
|
355 |
+
"## Define the commit message\n",
|
356 |
+
"commit_message = \"Upload PPO Tetris-v5 trained agent\"\n",
|
357 |
+
"\n",
|
358 |
+
"# Create the evaluation env and set the render_mode=\"rgb_array\"\n",
|
359 |
+
"eval_env = DummyVecEnv([lambda: gym.make(env_id, render_mode=\"rgb_array\")])\n",
|
360 |
+
"\n",
|
361 |
+
"# PLACE the package_to_hub function you've just filled here\n",
|
362 |
+
"package_to_hub(model=model, # Our trained model\n",
|
363 |
+
" model_name=model_name, # The name of our trained model\n",
|
364 |
+
" model_architecture=model_architecture, # The model architecture we used: in our case PPO\n",
|
365 |
+
" env_id=env_id, # Name of the environment\n",
|
366 |
+
" eval_env=eval_env, # Evaluation Environment\n",
|
367 |
+
" repo_id=repo_id, # id of the model repository from the Hugging Face Hub (repo_id = {organization}/{repo_name}\n",
|
368 |
+
" commit_message=commit_message)\n"
|
369 |
+
],
|
370 |
+
"metadata": {
|
371 |
+
"id": "I2E--IJu8JYq"
|
372 |
+
},
|
373 |
+
"execution_count": null,
|
374 |
+
"outputs": []
|
375 |
+
}
|
376 |
+
],
|
377 |
+
"metadata": {
|
378 |
+
"accelerator": "GPU",
|
379 |
+
"colab": {
|
380 |
+
"private_outputs": true,
|
381 |
+
"provenance": [],
|
382 |
+
"collapsed_sections": [
|
383 |
+
"QAN7B0_HCVZC",
|
384 |
+
"BqPKw3jt_pG5"
|
385 |
+
]
|
386 |
+
},
|
387 |
+
"gpuClass": "standard",
|
388 |
+
"kernelspec": {
|
389 |
+
"display_name": "Python 3.9.7",
|
390 |
+
"language": "python",
|
391 |
+
"name": "python3"
|
392 |
+
},
|
393 |
+
"language_info": {
|
394 |
+
"name": "python",
|
395 |
+
"version": "3.9.7"
|
396 |
+
},
|
397 |
+
"vscode": {
|
398 |
+
"interpreter": {
|
399 |
+
"hash": "ed7f8024e43d3b8f5ca3c5e1a8151ab4d136b3ecee1e3fd59e0766ccc55e1b10"
|
400 |
+
}
|
401 |
+
}
|
402 |
+
},
|
403 |
+
"nbformat": 4,
|
404 |
+
"nbformat_minor": 0
|
405 |
+
}
|