File size: 4,489 Bytes
c5c4fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e79fc76
 
 
 
 
c5c4fe3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dcb5d42
7f357ff
c31b564
c541579
e9de483
 
c5c4fe3
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import pandas as pd
import numpy as np
import onnxruntime as ort
import os
from tqdm import tqdm
import timm
import torchvision.transforms as T
from PIL import Image
import torch
import torch.nn as nn

def is_gpu_available():
    """Check if the python package `onnxruntime-gpu` is installed."""
    return torch.cuda.is_available()


class PytorchWorker:
    """Run inference using ONNX runtime."""

    def __init__(self, model_path: str, model_name: str, number_of_categories: int = 1605):

        def _load_model(model_name, model_path):

            print("Setting up Pytorch Model")
            self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
            print(f"Using devide: {self.device}")

            model = timm.create_model(model_name, num_classes=number_of_categories, pretrained=False)

            # if not torch.cuda.is_available():
            #     model_ckpt = torch.load(model_path, map_location=torch.device("cpu"))
            # else:
            #     model_ckpt = torch.load(model_path)

            model_ckpt = torch.load(model_path, map_location=self.device)
            model.load_state_dict(model_ckpt, strict=False)
            msg = model.load_state_dict(model_ckpt, strict=False)
            print("load_state_dict: ", msg)
            # num_features = model.get_classifier().in_features
            # model.classifier = nn.Linear(num_features, number_of_categories)

            return model.to(self.device).eval()

        self.model = _load_model(model_name, model_path)

        self.transforms = T.Compose([T.Resize((299, 299)),
                                     T.ToTensor(),
                                     T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
                                    #  T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])


    def predict_image(self, image: np.ndarray) -> list():
        """Run inference using ONNX runtime.
        :param image: Input image as numpy array.
        :return: A list with logits and confidences.
        """

        # logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
        
        self.model.eval()
        
        outputs = self.model(self.transforms(image).unsqueeze(0).to(self.device))
        
        _, preds = torch.max(outputs, 1)
        
        preds = preds.cpu()  # Move tensor to CPU    

        # post process
        max_value = torch.max(outputs)
        if max_value < -20:
            preds[0]=1604
        
        print("preds: ", preds)

        return preds.tolist()  # Convert tensor to list


def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
    """Make submission with given """

    model = PytorchWorker(model_path, model_name)

    predictions = []

    for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
        image_path = os.path.join(images_root_path, row.image_path)

        test_image = Image.open(image_path).convert("RGB")

        logits = model.predict_image(test_image)
        
        pred_class_id = logits[0] if logits[0] !=1604 else -1
        
        predictions.append(pred_class_id)

    test_metadata["class_id"] = predictions

    user_pred_df = test_metadata.drop_duplicates("observation_id", keep="first")
    user_pred_df[["observation_id", "class_id"]].to_csv(output_csv_path, index=None)


if __name__ == "__main__":

    import zipfile

    with zipfile.ZipFile("/tmp/data/private_testset.zip", 'r') as zip_ref:
        zip_ref.extractall("/tmp/data")

    # MODEL_PATH = './efficientnet_b3_epoch_9_delete_pre.pth' # "./efficientnet_b3_epoch_9.pth"
    # MODEL_PATH = './efficientnet_b3_epoch_24_trick1.2.3_0.6067.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_10_trick1.2.4_0.6016.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_3_trick1.2.3_a0.6067_l5.6311.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_21_trick1.2.5_a0.7237_l17.1662.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_21_trcik1.5.2.pth'
    # MODEL_PATH = './efficientnet_b3_epoch_28_1.4.3.pth'
    MODEL_PATH = './efficientnet_b3_epoch_28_trick1.4.3.2.pth'
    MODEL_NAME = 'tf_efficientnet_b3_ns' #"tf_efficientnet_b1.ap_in1k"

    metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
    test_metadata = pd.read_csv(metadata_file_path)

    make_submission(
        test_metadata=test_metadata,
        model_path=MODEL_PATH,
        model_name=MODEL_NAME
    )