Upload 07_data_augmentation.py
Browse files- 07_data_augmentation.py +171 -0
07_data_augmentation.py
ADDED
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import os
|
2 |
+
# import pandas as pd
|
3 |
+
# from PIL import Image, ImageOps
|
4 |
+
# import numpy as np
|
5 |
+
# from tqdm import tqdm
|
6 |
+
# from multiprocessing import Pool, cpu_count
|
7 |
+
|
8 |
+
# # 读取CSV文件
|
9 |
+
# csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
|
10 |
+
# data = pd.read_csv(csv_path)
|
11 |
+
|
12 |
+
# # 设置根目录
|
13 |
+
# root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'
|
14 |
+
|
15 |
+
# # 过滤poisonous为1的数据
|
16 |
+
# poisonous_data = data[data['poisonous'] == 1]
|
17 |
+
|
18 |
+
# # 创建保存增强数据的DataFrame,并包含原始数据
|
19 |
+
# new_data = data.copy()
|
20 |
+
|
21 |
+
# # 定义数据增强函数
|
22 |
+
# def augment_image(args):
|
23 |
+
# row, root_dir = args
|
24 |
+
# image_path = row['image_path']
|
25 |
+
# full_path = os.path.join(root_dir, image_path)
|
26 |
+
# augmented_rows = []
|
27 |
+
|
28 |
+
# if os.path.exists(full_path):
|
29 |
+
# image = Image.open(full_path)
|
30 |
+
# w, h = image.size
|
31 |
+
|
32 |
+
# # 定义旋转和翻转操作
|
33 |
+
# transformations = {
|
34 |
+
# 'r90': image.rotate(90, expand=True),
|
35 |
+
# 'r180': image.rotate(180, expand=True),
|
36 |
+
# 'r270': image.rotate(270, expand=True),
|
37 |
+
# 'fh': ImageOps.mirror(image),
|
38 |
+
# 'fv': ImageOps.flip(image),
|
39 |
+
# }
|
40 |
+
|
41 |
+
# for suffix, img in transformations.items():
|
42 |
+
# # 裁剪图片以去除旋转后的黑边
|
43 |
+
# if suffix in ['r90', 'r270']:
|
44 |
+
# img = img.crop((0, 0, h, w))
|
45 |
+
|
46 |
+
# new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
|
47 |
+
# new_full_path = os.path.join(root_dir, new_image_path)
|
48 |
+
# img.save(new_full_path)
|
49 |
+
|
50 |
+
# new_row = row.copy()
|
51 |
+
# new_row['image_path'] = new_image_path
|
52 |
+
# augmented_rows.append(new_row)
|
53 |
+
|
54 |
+
# return augmented_rows
|
55 |
+
|
56 |
+
# # 准备多进程处理
|
57 |
+
# num_processes = cpu_count()
|
58 |
+
# pool = Pool(processes=num_processes)
|
59 |
+
|
60 |
+
# # 使用tqdm显示进度
|
61 |
+
# augmented_data = []
|
62 |
+
# for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
|
63 |
+
# augmented_data.extend(augmented_rows)
|
64 |
+
|
65 |
+
# # 关闭进程池
|
66 |
+
# pool.close()
|
67 |
+
# pool.join()
|
68 |
+
|
69 |
+
# # 将增强后的数据添加到new_data中
|
70 |
+
# new_data = new_data.append(augmented_data, ignore_index=True)
|
71 |
+
|
72 |
+
# # 将数据保存到新的CSV文件中
|
73 |
+
# new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
|
74 |
+
# new_data.to_csv(new_csv_path, index=False)
|
75 |
+
|
76 |
+
|
77 |
+
import os
|
78 |
+
import pandas as pd
|
79 |
+
from PIL import Image, ImageOps
|
80 |
+
import numpy as np
|
81 |
+
from tqdm import tqdm
|
82 |
+
from multiprocessing import Pool, cpu_count
|
83 |
+
import random
|
84 |
+
|
85 |
+
# 读取CSV文件
|
86 |
+
csv_path = '/data/cjm/FungiCLEF2024/Dataset/06_new_train_valmetadata.csv'
|
87 |
+
data = pd.read_csv(csv_path)
|
88 |
+
|
89 |
+
# 设置根目录
|
90 |
+
root_dir = '/data/cjm/FungiCLEF2024/Dataset/DF20_21_300'
|
91 |
+
|
92 |
+
# 过滤poisonous为1的数据
|
93 |
+
poisonous_data = data[data['poisonous'] == 1]
|
94 |
+
|
95 |
+
# 创建保存增强数据的DataFrame,并包含原始数据
|
96 |
+
new_data = data.copy()
|
97 |
+
|
98 |
+
# 定义数据增强函数
|
99 |
+
def augment_image(args):
|
100 |
+
row, root_dir = args
|
101 |
+
image_path = row['image_path']
|
102 |
+
full_path = os.path.join(root_dir, image_path)
|
103 |
+
augmented_rows = []
|
104 |
+
|
105 |
+
if os.path.exists(full_path):
|
106 |
+
image = Image.open(full_path)
|
107 |
+
w, h = image.size
|
108 |
+
|
109 |
+
# 定义旋转和翻转操作
|
110 |
+
transformations = {
|
111 |
+
'r90': image.rotate(90, expand=True),
|
112 |
+
'r180': image.rotate(180, expand=True),
|
113 |
+
'r270': image.rotate(270, expand=True),
|
114 |
+
'fh': ImageOps.mirror(image),
|
115 |
+
'fv': ImageOps.flip(image),
|
116 |
+
}
|
117 |
+
|
118 |
+
# 添加随机裁剪操作
|
119 |
+
for i in range(4):
|
120 |
+
rand = random.uniform(0.7, 0.8)
|
121 |
+
new_w = int(w * rand)
|
122 |
+
new_h = int(h * rand)
|
123 |
+
left = random.randint(0, w - new_w)
|
124 |
+
top = random.randint(0, h - new_h)
|
125 |
+
right = left + new_w
|
126 |
+
bottom = top + new_h
|
127 |
+
cropped_image = image.crop((left, top, right, bottom))
|
128 |
+
# cropped_image = cropped_image.resize((w, h)) # 调整回原始尺寸
|
129 |
+
|
130 |
+
new_image_path = os.path.splitext(image_path)[0] + f'_crop{rand}.JPG'
|
131 |
+
new_full_path = os.path.join(root_dir, new_image_path)
|
132 |
+
cropped_image.save(new_full_path)
|
133 |
+
|
134 |
+
new_row = row.copy()
|
135 |
+
new_row['image_path'] = new_image_path
|
136 |
+
augmented_rows.append(new_row)
|
137 |
+
|
138 |
+
for suffix, img in transformations.items():
|
139 |
+
# 裁剪图片以去除旋转后的黑边
|
140 |
+
if suffix in ['r90', 'r270']:
|
141 |
+
img = img.crop((0, 0, h, w))
|
142 |
+
|
143 |
+
new_image_path = os.path.splitext(image_path)[0] + f'_{suffix}.JPG'
|
144 |
+
new_full_path = os.path.join(root_dir, new_image_path)
|
145 |
+
img.save(new_full_path)
|
146 |
+
|
147 |
+
new_row = row.copy()
|
148 |
+
new_row['image_path'] = new_image_path
|
149 |
+
augmented_rows.append(new_row)
|
150 |
+
|
151 |
+
return augmented_rows
|
152 |
+
|
153 |
+
# 准备多进程处理
|
154 |
+
num_processes = cpu_count()
|
155 |
+
pool = Pool(processes=num_processes)
|
156 |
+
|
157 |
+
# 使用tqdm显示进度
|
158 |
+
augmented_data = []
|
159 |
+
for augmented_rows in tqdm(pool.imap_unordered(augment_image, [(row, root_dir) for _, row in poisonous_data.iterrows()]), total=len(poisonous_data)):
|
160 |
+
augmented_data.extend(augmented_rows)
|
161 |
+
|
162 |
+
# 关闭进程池
|
163 |
+
pool.close()
|
164 |
+
pool.join()
|
165 |
+
|
166 |
+
# 将增强后的数据添加到new_data中
|
167 |
+
new_data = new_data.append(augmented_data, ignore_index=True)
|
168 |
+
|
169 |
+
# 将数据保存到新的CSV文件中
|
170 |
+
new_csv_path = '/data/cjm/FungiCLEF2024/Dataset/07_new_train_valmetadata.csv'
|
171 |
+
new_data.to_csv(new_csv_path, index=False)
|