Update script.py
Browse files
script.py
CHANGED
@@ -49,41 +49,47 @@ class PytorchWorker:
|
|
49 |
# T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
50 |
|
51 |
|
52 |
-
def predict_image(self, image: np.ndarray) -> list:
|
53 |
"""Run inference using ONNX runtime.
|
54 |
:param image: Input image as numpy array.
|
55 |
:return: A list with logits and confidences.
|
56 |
"""
|
|
|
|
|
|
|
57 |
self.model.eval()
|
|
|
58 |
outputs = self.model(self.transforms(image).unsqueeze(0).to(self.device))
|
59 |
-
|
|
|
|
|
|
|
60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
-
|
|
|
63 |
"""Make submission with given """
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
predictions = []
|
68 |
-
|
69 |
-
incorrect_max_values = []
|
70 |
-
|
71 |
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
|
72 |
image_path = os.path.join(images_root_path, row.image_path)
|
|
|
73 |
test_image = Image.open(image_path).convert("RGB")
|
|
|
|
|
74 |
|
75 |
-
|
76 |
-
outputs2 = model2.predict_image(test_image)
|
77 |
-
|
78 |
-
# max_value = torch.max(outputs+outputs2)
|
79 |
-
_, preds = torch.max(outputs, 1) # baseline
|
80 |
-
_, preds2 = torch.max(outputs2, 1) # 1.4.3
|
81 |
-
|
82 |
-
pred_class_id = preds.tolist()
|
83 |
-
pred_class_id2 = preds2.tolist()
|
84 |
-
# max_value2 = torch.max(outputs2)
|
85 |
-
|
86 |
-
pred_class_id = pred_class_id[0] if pred_class_id2[0] != 1604 else -1
|
87 |
|
88 |
predictions.append(pred_class_id)
|
89 |
|
@@ -107,17 +113,15 @@ if __name__ == "__main__":
|
|
107 |
# MODEL_PATH = './efficientnet_b3_epoch_21_trick1.2.5_a0.7237_l17.1662.pth'
|
108 |
# MODEL_PATH = './efficientnet_b3_epoch_21_trcik1.5.2.pth'
|
109 |
# MODEL_PATH = './efficientnet_b3_epoch_28_1.4.3.pth'
|
110 |
-
MODEL_PATH = './
|
111 |
-
|
112 |
-
MODEL_NAME = "
|
113 |
-
|
114 |
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
|
115 |
test_metadata = pd.read_csv(metadata_file_path)
|
116 |
|
117 |
make_submission(
|
118 |
test_metadata=test_metadata,
|
119 |
model_path=MODEL_PATH,
|
120 |
-
|
121 |
-
model_name=MODEL_NAME,
|
122 |
-
model_name2=MODEL_NAME2
|
123 |
)
|
|
|
49 |
# T.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])])
|
50 |
|
51 |
|
52 |
+
def predict_image(self, image: np.ndarray) -> list():
|
53 |
"""Run inference using ONNX runtime.
|
54 |
:param image: Input image as numpy array.
|
55 |
:return: A list with logits and confidences.
|
56 |
"""
|
57 |
+
|
58 |
+
# logits = self.model(self.transforms(image).unsqueeze(0).to(self.device))
|
59 |
+
|
60 |
self.model.eval()
|
61 |
+
|
62 |
outputs = self.model(self.transforms(image).unsqueeze(0).to(self.device))
|
63 |
+
|
64 |
+
_, preds = torch.max(outputs, 1)
|
65 |
+
|
66 |
+
preds = preds.cpu() # Move tensor to CPU
|
67 |
|
68 |
+
# post process
|
69 |
+
# max_value = torch.max(outputs)
|
70 |
+
# if max_value < -20:
|
71 |
+
# preds[0]=1604
|
72 |
+
|
73 |
+
print("preds: ", preds)
|
74 |
+
|
75 |
+
return preds.tolist() # Convert tensor to list
|
76 |
|
77 |
+
|
78 |
+
def make_submission(test_metadata, model_path, model_name, output_csv_path="./submission.csv", images_root_path="/tmp/data/private_testset"):
|
79 |
"""Make submission with given """
|
80 |
+
|
81 |
+
model = PytorchWorker(model_path, model_name)
|
82 |
+
|
83 |
predictions = []
|
84 |
+
|
|
|
|
|
85 |
for _, row in tqdm(test_metadata.iterrows(), total=len(test_metadata)):
|
86 |
image_path = os.path.join(images_root_path, row.image_path)
|
87 |
+
|
88 |
test_image = Image.open(image_path).convert("RGB")
|
89 |
+
|
90 |
+
logits = model.predict_image(test_image)
|
91 |
|
92 |
+
pred_class_id = logits[0] if logits[0] !=1604 else -1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
|
94 |
predictions.append(pred_class_id)
|
95 |
|
|
|
113 |
# MODEL_PATH = './efficientnet_b3_epoch_21_trick1.2.5_a0.7237_l17.1662.pth'
|
114 |
# MODEL_PATH = './efficientnet_b3_epoch_21_trcik1.5.2.pth'
|
115 |
# MODEL_PATH = './efficientnet_b3_epoch_28_1.4.3.pth'
|
116 |
+
# MODEL_PATH = './efficientnet_b3_epoch_28_trick1.4.3.2.pth'
|
117 |
+
MODEL_PATH = './fused_model_soup.pth'
|
118 |
+
MODEL_NAME = 'tf_efficientnet_b3_ns' #"tf_efficientnet_b1.ap_in1k"
|
119 |
+
|
120 |
metadata_file_path = "./FungiCLEF2024_TestMetadata.csv"
|
121 |
test_metadata = pd.read_csv(metadata_file_path)
|
122 |
|
123 |
make_submission(
|
124 |
test_metadata=test_metadata,
|
125 |
model_path=MODEL_PATH,
|
126 |
+
model_name=MODEL_NAME
|
|
|
|
|
127 |
)
|